Nuprl Lemma : constant-Kan-type_wf
∀[X:KanCubicalSet]. ∀[Gamma:CubicalSet].  (constant-Kan-type(X) ∈ {Gamma ⊢ _(Kan)})
Proof
Definitions occuring in Statement : 
constant-Kan-type: constant-Kan-type(X), 
Kan-cubical-set: KanCubicalSet, 
Kan-cubical-type: {X ⊢ _(Kan)}, 
cubical-set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
Kan-cubical-set: KanCubicalSet, 
Kan-cubical-type: {X ⊢ _(Kan)}, 
constant-Kan-type: constant-Kan-type(X), 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
top: Top, 
nameset: nameset(L), 
I-cube: X(I), 
functor-ob: ob(F), 
pi1: fst(t), 
cubical-type-at: A(a), 
constant-cubical-type: (X), 
cubical-set: CubicalSet, 
cand: A c∧ B, 
prop: ℙ, 
Kan-filler: Kan-filler(X;filler), 
Kan-A-filler: Kan-A-filler(X;A;filler), 
fills-open_box: fills-open_box(X;I;bx;cube), 
fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube), 
fills-faces: fills-faces(X;I;bx;L), 
fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L), 
is-A-face: is-A-face(X;A;I;alpha;bx;f), 
cubical-type-ap-morph: (u a f), 
pi2: snd(t), 
is-face: is-face(X;I;bx;f), 
l_all: (∀x∈L.P[x]), 
open_box: open_box(X;I;J;x;i), 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
coordinate_name: Cname, 
int_upper: {i...}, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
less_than: a < b, 
I-face: I-face(X;I), 
face-cube: cube(f), 
face-direction: direction(f), 
face-dimension: dimension(f), 
spreadn: spread3, 
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler), 
uniform-Kan-filler: uniform-Kan-filler(X;filler), 
open_box_image: open_box_image(X;I;K;f;bx), 
A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx), 
face-image: face-image(X;I;K;f;face), 
A-face-image: A-face-image(X;A;I;K;f;alpha;face), 
name-morph: name-morph(I;J)
Lemmas referenced : 
constant-cubical-type_wf, 
list_wf, 
coordinate_name_wf, 
subtype_rel_dep_function, 
nameset_wf, 
int_seg_wf, 
open_box_wf, 
I-cube_wf, 
A-open-box_wf, 
cubical-type-at_wf, 
subtype_rel-equal, 
constant-A-open-box, 
subtype_rel_list, 
subtype_rel_self, 
Kan-A-filler_wf, 
uniform-Kan-A-filler_wf, 
cubical-set_wf, 
Kan-cubical-set_wf, 
select_wf, 
I-face_wf, 
int_seg_properties, 
length_wf, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal_wf, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
cube-set-restriction_wf, 
face-map_wf2, 
assert_wf, 
isname_wf, 
all_wf, 
l_member_wf, 
name-morph_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
dependent_set_memberEquality, 
sqequalRule, 
dependent_pairEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
natural_numberEquality, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
spreadEquality, 
independent_pairFormation, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}[X:KanCubicalSet].  \mforall{}[Gamma:CubicalSet].    (constant-Kan-type(X)  \mmember{}  \{Gamma  \mvdash{}  \_(Kan)\})
Date html generated:
2017_10_05-AM-10_26_26
Last ObjectModification:
2017_07_28-AM-11_22_53
Theory : cubical!sets
Home
Index