Nuprl Lemma : face-maps-comp_wf

[L:(Cname × ℕ2) List]. ∀[I:Cname List].  (face-maps-comp(L) ∈ name-morph(map(λp.(fst(p));L) I;I))


Proof




Definitions occuring in Statement :  face-maps-comp: face-maps-comp(L) name-morph: name-morph(I;J) coordinate_name: Cname map: map(f;as) append: as bs list: List int_seg: {i..j-} uall: [x:A]. B[x] pi1: fst(t) member: t ∈ T lambda: λx.A[x] product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q face-maps-comp: face-maps-comp(L) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) id-morph: 1 pi1: fst(t)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list_wf coordinate_name_wf equal-wf-T-base nat_wf colength_wf_list int_seg_wf less_than_transitivity1 less_than_irreflexivity list-cases map_nil_lemma reduce_nil_lemma list_ind_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int map_cons_lemma reduce_cons_lemma list_ind_cons_lemma id-morph_wf name-comp_wf cons_wf append_wf map_wf face-map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry productEquality applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination

Latex:
\mforall{}[L:(Cname  \mtimes{}  \mBbbN{}2)  List].  \mforall{}[I:Cname  List].    (face-maps-comp(L)  \mmember{}  name-morph(map(\mlambda{}p.(fst(p));L)  @  I;I))



Date html generated: 2017_10_05-AM-10_09_47
Last ObjectModification: 2017_07_28-AM-11_17_20

Theory : cubical!sets


Home Index