Nuprl Lemma : ctt_meaning_functionality
∀[ctxt:?CubicalContext]. ∀[t,t':CttTerm].  [[ctxt;t]] = [[ctxt;t']] ∈ 𝕌{i'''''} supposing ctt-eq{i:l}(t;t')
Proof
Definitions occuring in Statement : 
ctt_meaning: [[ctxt;t]]
, 
ctt-eq: ctt-eq{i:l}(a;b)
, 
ctt-term: CttTerm
, 
cubical-context: ?CubicalContext
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ctt_meaning: [[ctxt;t]]
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
ctt-eq: ctt-eq{i:l}(a;b)
, 
guard: {T}
, 
ctt-term: CttTerm
, 
wfterm: wfterm(opr;sort;arity)
, 
ctt-meaning-type: ctt-meaning-type{i:l}(X;t)
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
less_than': less_than'(a;b)
Lemmas referenced : 
context-ok_wf, 
squash_wf, 
true_wf, 
istype-universe, 
ctt-eq_wf, 
isvarterm_wf, 
ctt-op_wf, 
isvarterm_functionality, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
ctt-term-meaning_wf, 
context-set_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
ifthenelse_wf, 
eq_atom_wf, 
ctt-op-sort_wf, 
term-opr_wf, 
ctt-type-meaning_wf, 
int_seg_wf, 
ctt-level-type_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
eqtt_to_assert, 
assert_of_eq_atom, 
equal_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_atom, 
btrue_wf, 
int_seg_subtype_nat, 
istype-false, 
bfalse_wf, 
subtype_rel_universe1, 
uiff_transitivity, 
assert_of_bnot, 
term-opr_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
isectEquality, 
cumulativity, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
tokenEquality, 
productEquality, 
dependent_set_memberEquality_alt, 
productElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
hyp_replacement, 
applyLambdaEquality, 
closedConclusion, 
lambdaFormation_alt, 
equalityElimination, 
equalityIstype, 
promote_hyp
Latex:
\mforall{}[ctxt:?CubicalContext].  \mforall{}[t,t':CttTerm].    [[ctxt;t]]  =  [[ctxt;t']]  supposing  ctt-eq\{i:l\}(t;t')
Date html generated:
2020_05_21-AM-10_33_44
Last ObjectModification:
2020_05_13-PM-04_36_16
Theory : cubical!type!theory
Home
Index