Nuprl Lemma : name-morph-satisfies-0

[I:fset(ℕ)]. ∀[i:ℕ].  ((i=0) (i0)) 1


Proof




Definitions occuring in Statement :  name-morph-satisfies: (psi f) 1 fl0: (x=0) nc-0: (i0) add-name: I+i fset: fset(T) nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] names: names(I) subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: uiff: uiff(P;Q) and: P ∧ Q nc-0: (i0) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  empty-fset: {} nil: [] dM0: 0 lattice-0: 0 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) exists: x:A. B[x] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bnot: ¬bb not: ¬A false: False or: P ∨ Q sq_type: SQType(T) assert: b nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top name-morph-satisfies: (psi f) 1
Lemmas referenced :  name-morph-satisfies-fl0 add-name_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self nc-0_wf eq_int_wf eqtt_to_assert assert_of_eq_int dM0_wf eqff_to_assert assert_elim bnot_wf equal_wf squash_wf true_wf istype-universe bool_wf eq_int_eq_true subtype_rel_self iff_weakening_equal bfalse_wf bool_subtype_base set_subtype_base int_subtype_base btrue_neq_bfalse bool_cases_sqequal subtype_base_sq assert-bnot neg_assert_of_eq_int nat_properties full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf istype-nat fset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination dependent_set_memberEquality_alt universeIsType applyEquality intEquality independent_isectElimination because_Cache sqequalRule lambdaEquality_alt closedConclusion natural_numberEquality productElimination setElimination rename inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIsType4 baseApply baseClosed imageElimination instantiate universeEquality imageMemberEquality independent_functionElimination independent_pairFormation productIsType applyLambdaEquality voidElimination promote_hyp cumulativity approximateComputation int_eqEquality isect_memberEquality_alt equalityIsType1 axiomEquality isectIsTypeImplies

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    ((i=0)  (i0))  =  1



Date html generated: 2019_11_04-PM-05_34_46
Last ObjectModification: 2018_11_08-AM-11_06_46

Theory : cubical!type!theory


Home Index