Nuprl Lemma : name-morph-satisfies-0
∀[I:fset(ℕ)]. ∀[i:ℕ].  ((i=0) (i0)) = 1
Proof
Definitions occuring in Statement : 
name-morph-satisfies: (psi f) = 1
, 
fl0: (x=0)
, 
nc-0: (i0)
, 
add-name: I+i
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
names: names(I)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
nc-0: (i0)
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
empty-fset: {}
, 
nil: []
, 
dM0: 0
, 
lattice-0: 0
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bnot: ¬bb
, 
not: ¬A
, 
false: False
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
name-morph-satisfies: (psi f) = 1
Lemmas referenced : 
name-morph-satisfies-fl0, 
add-name_wf, 
trivial-member-add-name1, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
nc-0_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
dM0_wf, 
eqff_to_assert, 
assert_elim, 
bnot_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
bool_wf, 
eq_int_eq_true, 
subtype_rel_self, 
iff_weakening_equal, 
bfalse_wf, 
bool_subtype_base, 
set_subtype_base, 
int_subtype_base, 
btrue_neq_bfalse, 
bool_cases_sqequal, 
subtype_base_sq, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_properties, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-nat, 
fset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
universeIsType, 
applyEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
closedConclusion, 
natural_numberEquality, 
productElimination, 
setElimination, 
rename, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation_alt, 
equalityIsType4, 
baseApply, 
baseClosed, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
independent_functionElimination, 
independent_pairFormation, 
productIsType, 
applyLambdaEquality, 
voidElimination, 
promote_hyp, 
cumulativity, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
equalityIsType1, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    ((i=0)  (i0))  =  1
Date html generated:
2019_11_04-PM-05_34_46
Last ObjectModification:
2018_11_08-AM-11_06_46
Theory : cubical!type!theory
Home
Index