Nuprl Lemma : nc-e'-comp-e

[I,J:fset(ℕ)]. ∀[g:J ⟶ I]. ∀[j,k,v:ℕ].  g,j=v ⋅ e(v;k) g,j=k ∈ J+k ⟶ I+j supposing ¬v ∈ J


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-e: e(i;j) add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a names-hom: I ⟶ J nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nc-e': g,i=j names: names(I) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  squash: T subtype_rel: A ⊆B prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q nc-e: e(i;j) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int equal_wf lattice-point_wf dM_wf add-name_wf dM-lift-inc nc-e_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf dM_inc_wf iff_weakening_equal eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf not-added-name subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-is-id2 f-subset-add-name f-subset_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self names-subtype names_wf not_wf names-hom_wf fset_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination applyEquality lambdaEquality imageElimination because_Cache dependent_functionElimination dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity voidElimination int_eqEquality intEquality isect_memberEquality voidEquality computeAll productEquality universeEquality axiomEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[j,k,v:\mBbbN{}].    g,j=v  \mcdot{}  e(v;k)  =  g,j=k  supposing  \mneg{}v  \mmember{}  J



Date html generated: 2017_10_05-AM-01_04_35
Last ObjectModification: 2017_07_28-AM-09_27_05

Theory : cubical!type!theory


Home Index