Nuprl Lemma : Euclid-Prop26-2
∀e:EuclideanPlane. ∀a,b,c,x,y,z:Point.
  (a # bc 
⇒ x # yz 
⇒ abc ≅a xyz 
⇒ bac ≅a yxz 
⇒ ac ≅ xz 
⇒ (ab ≅ xy ∧ bc ≅ yz ∧ bca ≅a yzx))
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
stable: Stable{P}
, 
or: P ∨ Q
, 
false: False
, 
not: ¬A
, 
geo-gt: cd > ab
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
geo-strict-between: a-b-c
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
basic-geometry-: BasicGeometry-
, 
geo-out: out(p ab)
, 
geo-tri: Triangle(a;b;c)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-cong-angle_wf, 
geo-lsep_wf, 
geo-point_wf, 
geo-ge-cases, 
stable__geo-congruent, 
double-negation-hyp-elim, 
geo-gt_wf, 
not_wf, 
istype-void, 
geo-congruent-sep, 
lsep-implies-sep, 
colinear-lsep, 
lsep-all-sym, 
geo-sep-sym, 
geo-strict-between-sep2, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
Euclid-prop16, 
colinear-lsep-cycle, 
geo-strict-between-sym, 
lsep-symmetry, 
geo-between-out, 
geo-between-symmetry, 
geo-out_weakening, 
geo-eq_weakening, 
geo-lt-angle-symm, 
geo-out-preserves-lt-angle, 
lt-angle-not-cong2, 
geo-sas2, 
p4geo, 
geo-between_wf, 
out-preserves-angle-cong_1, 
euclidean-plane-axioms, 
geo-cong-angle-symm2, 
geo-cong-angle-transitivity, 
geo-congruent-iff-length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
independent_pairFormation, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
setElimination, 
rename, 
unionEquality, 
independent_functionElimination, 
unionElimination, 
voidElimination, 
lambdaEquality_alt, 
functionIsType, 
unionIsType, 
imageElimination, 
productElimination, 
isect_memberEquality_alt, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
productIsType, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.
    (a  \#  bc  {}\mRightarrow{}  x  \#  yz  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  bac  \mcong{}\msuba{}  yxz  {}\mRightarrow{}  ac  \mcong{}  xz  {}\mRightarrow{}  (ab  \mcong{}  xy  \mwedge{}  bc  \mcong{}  yz  \mwedge{}  bca  \mcong{}\msuba{}  yzx))
Date html generated:
2019_10_16-PM-02_35_56
Last ObjectModification:
2019_09_12-AM-11_58_07
Theory : euclidean!plane!geometry
Home
Index