Nuprl Lemma : Euclid-Prop26-2

e:EuclideanPlane. ∀a,b,c,x,y,z:Point.
  (a bc  yz  abc ≅a xyz  bac ≅a yxz  ac ≅ xz  (ab ≅ xy ∧ bc ≅ yz ∧ bca ≅a yzx))


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane stable: Stable{P} or: P ∨ Q false: False not: ¬A geo-gt: cd > ab squash: T exists: x:A. B[x] geo-strict-between: a-b-c geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) select: L[n] cons: [a b] subtract: m basic-geometry-: BasicGeometry- geo-out: out(p ab) geo-tri: Triangle(a;b;c) uiff: uiff(P;Q)
Lemmas referenced :  geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf geo-lsep_wf geo-point_wf geo-ge-cases stable__geo-congruent double-negation-hyp-elim geo-gt_wf not_wf istype-void geo-congruent-sep lsep-implies-sep colinear-lsep lsep-all-sym geo-sep-sym geo-strict-between-sep2 geo-colinear-is-colinear-set geo-between-implies-colinear length_of_cons_lemma length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than Euclid-prop16 colinear-lsep-cycle geo-strict-between-sym lsep-symmetry geo-between-out geo-between-symmetry geo-out_weakening geo-eq_weakening geo-lt-angle-symm geo-out-preserves-lt-angle lt-angle-not-cong2 geo-sas2 p4geo geo-between_wf out-preserves-angle-cong_1 euclidean-plane-axioms geo-cong-angle-symm2 geo-cong-angle-transitivity geo-congruent-iff-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut independent_pairFormation hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType dependent_functionElimination setElimination rename unionEquality independent_functionElimination unionElimination voidElimination lambdaEquality_alt functionIsType unionIsType imageElimination productElimination isect_memberEquality_alt dependent_set_memberEquality_alt natural_numberEquality approximateComputation dependent_pairFormation_alt productIsType equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.
    (a  \#  bc  {}\mRightarrow{}  x  \#  yz  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  bac  \mcong{}\msuba{}  yxz  {}\mRightarrow{}  ac  \mcong{}  xz  {}\mRightarrow{}  (ab  \mcong{}  xy  \mwedge{}  bc  \mcong{}  yz  \mwedge{}  bca  \mcong{}\msuba{}  yzx))



Date html generated: 2019_10_16-PM-02_35_56
Last ObjectModification: 2019_09_12-AM-11_58_07

Theory : euclidean!plane!geometry


Home Index