Nuprl Lemma : geo-out-cong-implies-eq

e:BasicGeometry. ∀a,b,x,y:Point.  (out(a bx)  out(a by)  ax ≅ ay  x ≡ y)


Proof




Definitions occuring in Statement :  geo-out: out(p ab) basic-geometry: BasicGeometry geo-eq: a ≡ b geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T basic-geometry: BasicGeometry uall: [x:A]. B[x] subtype_rel: A ⊆B exists: x:A. B[x] and: P ∧ Q geo-out: out(p ab) l_member: (x ∈ l) nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: false: False select: L[n] cons: [a b] cand: c∧ B less_than: a < b squash: T less_than': less_than'(a;b) true: True ge: i ≥  subtract: m append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- guard: {T} geo-eq: a ≡ b geo-strict-between: a-b-c
Lemmas referenced :  geo-colinear-append cons_wf geo-point_wf nil_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le length_of_cons_lemma length_of_nil_lemma istype-less_than length_wf select_wf nat_properties intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma geo-sep_wf l_member_wf geo-colinear-is-colinear-set geo-out-colinear list_ind_cons_lemma list_ind_nil_lemma decidable__lt intformless_wf int_formula_prop_less_lemma geo-colinear-cases subtype_rel_self basic-geometry-_wf geo-eq_wf stable_geo-eq euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-strict-between_wf geo-congruent_wf geo-out_wf geo-sep-sym geo-proper-extend-exists geo-O_wf geo-X_wf geo-sep-O-X geo-construction-unicity euclidean-plane-axioms geo-strict-between-sep3 geo-between-symmetry geo-strict-between-implies-between geo-between-outer-trans geo-congruent-symmetry geo-between-exchange3 geo-not-bet-and-out geo-out_inversion geo-out_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination applyEquality because_Cache hypothesis sqequalRule independent_functionElimination dependent_pairFormation_alt independent_pairFormation productElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination independent_isectElimination approximateComputation lambdaEquality_alt isect_memberEquality_alt voidElimination universeIsType imageMemberEquality baseClosed inhabitedIsType productIsType setElimination rename equalityIstype int_eqEquality equalityTransitivity equalitySymmetry instantiate functionIsType

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,x,y:Point.    (out(a  bx)  {}\mRightarrow{}  out(a  by)  {}\mRightarrow{}  ax  \mcong{}  ay  {}\mRightarrow{}  x  \mequiv{}  y)



Date html generated: 2019_10_16-PM-01_24_39
Last ObjectModification: 2019_03_14-PM-09_08_17

Theory : euclidean!plane!geometry


Home Index