Nuprl Lemma : ip-between-rleq
∀[rv:InnerProductSpace]. ∀[a,b,c:Point].  {(||a - b|| ≤ ||a - c||) ∧ (||b - c|| ≤ ||a - c||)} supposing a_b_c
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rleq: x ≤ y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
and: P ∧ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ip-dist-between, 
less_than'_wf, 
rsub_wf, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
nat_plus_wf, 
ip-between_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
radd_wf, 
rleq_functionality, 
req_weakening, 
radd-preserves-rleq, 
rminus_wf, 
rv-norm-nonneg, 
uiff_transitivity, 
req_transitivity, 
radd_functionality, 
rminus-as-rmul, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
radd-assoc, 
rmul_functionality, 
radd-int, 
rmul-zero-both, 
radd-zero-both, 
radd-ac, 
radd_comm, 
radd-rminus-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
instantiate, 
voidElimination, 
independent_pairFormation, 
addLevel, 
addEquality, 
independent_functionElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c:Point].
    \{(||a  -  b||  \mleq{}  ||a  -  c||)  \mwedge{}  (||b  -  c||  \mleq{}  ||a  -  c||)\}  supposing  a\_b\_c
Date html generated:
2017_10_05-AM-00_01_42
Last ObjectModification:
2017_03_13-PM-06_12_14
Theory : inner!product!spaces
Home
Index