Nuprl Lemma : rv-perp-same-norm

rv:InnerProductSpace. ∀x:Point.  (x  (∃y:Point. ((||y|| ||x||) ∧ (x ⋅ r0))))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-0: 0 req: y int-to-real: r(n) ss-sep: y ss-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] and: P ∧ Q prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A uiff: uiff(P;Q) nat: rev_uimplies: rev_uimplies(P;Q) cand: c∧ B
Lemmas referenced :  rv-perp-1 ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rv-0_wf ss-point_wf rv-norm-eq-iff int-to-real_wf rleq-int false_wf rv-ip_wf rnexp_wf le_wf req_functionality req_weakening rnexp-one rv-mul_wf rv-norm_wf real_wf rleq_wf req_wf rmul_wf rabs_wf rv-norm-nonneg rmul-one req_transitivity rv-norm-mul rmul_functionality rabs-of-nonneg rmul-zero rv-ip-mul2
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination isectElimination applyEquality instantiate independent_isectElimination sqequalRule natural_numberEquality independent_pairFormation dependent_set_memberEquality because_Cache dependent_pairFormation lambdaEquality setElimination rename setEquality productEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:Point.    (x  \#  0  {}\mRightarrow{}  (\mexists{}y:Point.  ((||y||  =  ||x||)  \mwedge{}  (x  \mcdot{}  y  =  r0))))



Date html generated: 2017_10_04-PM-11_52_08
Last ObjectModification: 2017_03_14-PM-02_22_13

Theory : inner!product!spaces


Home Index