Nuprl Lemma : rv-perp-same-norm
∀rv:InnerProductSpace. ∀x:Point.  (x # 0 
⇒ (∃y:Point. ((||y|| = ||x||) ∧ (x ⋅ y = r0))))
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-0: 0
, 
req: x = y
, 
int-to-real: r(n)
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
nat: ℕ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
Lemmas referenced : 
rv-perp-1, 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rv-0_wf, 
ss-point_wf, 
rv-norm-eq-iff, 
int-to-real_wf, 
rleq-int, 
false_wf, 
rv-ip_wf, 
rnexp_wf, 
le_wf, 
req_functionality, 
req_weakening, 
rnexp-one, 
rv-mul_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
req_wf, 
rmul_wf, 
rabs_wf, 
rv-norm-nonneg, 
rmul-one, 
req_transitivity, 
rv-norm-mul, 
rmul_functionality, 
rabs-of-nonneg, 
rmul-zero, 
rv-ip-mul2
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
natural_numberEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
because_Cache, 
dependent_pairFormation, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:Point.    (x  \#  0  {}\mRightarrow{}  (\mexists{}y:Point.  ((||y||  =  ||x||)  \mwedge{}  (x  \mcdot{}  y  =  r0))))
Date html generated:
2017_10_04-PM-11_52_08
Last ObjectModification:
2017_03_14-PM-02_22_13
Theory : inner!product!spaces
Home
Index