Nuprl Lemma : rv-perp-1
∀rv:InnerProductSpace. ∀x:Point(rv).  (x # 0 ⇒ (∃y:Point(rv). ((y^2 = r1) ∧ (x ⋅ y = r0))))
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y, 
inner-product-space: InnerProductSpace, 
rv-0: 0, 
req: x = y, 
int-to-real: r(n), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
inner-product-space: InnerProductSpace, 
record+: record+, 
record-select: r.x, 
subtype_rel: A ⊆r B, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
rv-ip: x ⋅ y, 
uimplies: b supposing a, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top
Lemmas referenced : 
subtype_rel_self, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
real_wf, 
all_wf, 
Error :ss-eq_wf, 
req_wf, 
rv-add_wf, 
radd_wf, 
rv-mul_wf, 
rmul_wf, 
iff_wf, 
Error :ss-sep_wf, 
rv-0_wf, 
rless_wf, 
int-to-real_wf, 
exists_wf, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
rv-unit_wf, 
rv-unit-squared, 
rv-ip_wf, 
rv-unit-property, 
req_functionality, 
rv-ip_functionality, 
Error :ss-eq_weakening, 
req_weakening, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
req_transitivity, 
rv-ip-mul2, 
rmul_functionality, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
sqequalRule, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
extract_by_obid, 
isectElimination, 
setEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
productEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType, 
closedConclusion, 
natural_numberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
instantiate, 
independent_isectElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
productIsType, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:Point(rv).    (x  \#  0  {}\mRightarrow{}  (\mexists{}y:Point(rv).  ((y\^{}2  =  r1)  \mwedge{}  (x  \mcdot{}  y  =  r0))))
Date html generated:
2020_05_20-PM-01_11_40
Last ObjectModification:
2019_12_09-PM-07_24_32
Theory : inner!product!spaces
Home
Index