Nuprl Lemma : int-rdiv-int-rdiv

[k,j:ℤ-o]. ∀[x:ℝ].  (((x)/k)/j (x)/j k)


Proof




Definitions occuring in Statement :  int-rdiv: (a)/k1 req: y real: int_nzero: -o uall: [x:A]. B[x] multiply: m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_nzero: -o uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q not: ¬A nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  req_functionality int-rdiv_wf rdiv_wf int-to-real_wf rneq-int int_nzero_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf set_subtype_base nequal_wf int_subtype_base mul_nzero int_entire_a int-rdiv-req req_witness real_wf int_nzero_wf rmul_wf rneq_functionality rmul-int req_weakening rdiv_functionality req_inversion rmul_preserves_req rinv_wf2 itermSubtract_wf itermMultiply_wf req_transitivity rmul_functionality rmul-rinv rinv-of-rmul rmul-rinv3 rinv-mul-as-rdiv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename because_Cache independent_isectElimination dependent_functionElimination natural_numberEquality productElimination independent_functionElimination lambdaFormation_alt approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType equalityIstype applyEquality intEquality baseClosed sqequalBase equalitySymmetry dependent_set_memberEquality_alt multiplyEquality inhabitedIsType isectIsTypeImplies equalityTransitivity

Latex:
\mforall{}[k,j:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[x:\mBbbR{}].    (((x)/k)/j  =  (x)/j  *  k)



Date html generated: 2019_10_29-AM-09_58_48
Last ObjectModification: 2019_02_02-PM-02_07_41

Theory : reals


Home Index