Nuprl Lemma : int-rdiv-int-rdiv
∀[k,j:ℤ-o]. ∀[x:ℝ]. (((x)/k)/j = (x)/j * k)
Proof
Definitions occuring in Statement :
int-rdiv: (a)/k1
,
req: x = y
,
real: ℝ
,
int_nzero: ℤ-o
,
uall: ∀[x:A]. B[x]
,
multiply: n * m
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int_nzero: ℤ-o
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
not: ¬A
,
nequal: a ≠ b ∈ T
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
rdiv: (x/y)
,
req_int_terms: t1 ≡ t2
Lemmas referenced :
req_functionality,
int-rdiv_wf,
rdiv_wf,
int-to-real_wf,
rneq-int,
int_nzero_properties,
full-omega-unsat,
intformand_wf,
intformeq_wf,
itermVar_wf,
itermConstant_wf,
intformnot_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_not_lemma,
int_formula_prop_wf,
set_subtype_base,
nequal_wf,
int_subtype_base,
mul_nzero,
int_entire_a,
int-rdiv-req,
req_witness,
real_wf,
int_nzero_wf,
rmul_wf,
rneq_functionality,
rmul-int,
req_weakening,
rdiv_functionality,
req_inversion,
rmul_preserves_req,
rinv_wf2,
itermSubtract_wf,
itermMultiply_wf,
req_transitivity,
rmul_functionality,
rmul-rinv,
rinv-of-rmul,
rmul-rinv3,
rinv-mul-as-rdiv,
req-iff-rsub-is-0,
real_polynomial_null,
real_term_value_sub_lemma,
real_term_value_mul_lemma,
real_term_value_var_lemma,
real_term_value_const_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
because_Cache,
independent_isectElimination,
dependent_functionElimination,
natural_numberEquality,
productElimination,
independent_functionElimination,
lambdaFormation_alt,
approximateComputation,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
isect_memberEquality_alt,
voidElimination,
sqequalRule,
independent_pairFormation,
universeIsType,
equalityIstype,
applyEquality,
intEquality,
baseClosed,
sqequalBase,
equalitySymmetry,
dependent_set_memberEquality_alt,
multiplyEquality,
inhabitedIsType,
isectIsTypeImplies,
equalityTransitivity
Latex:
\mforall{}[k,j:\mBbbZ{}\msupminus{}\msupzero{}]. \mforall{}[x:\mBbbR{}]. (((x)/k)/j = (x)/j * k)
Date html generated:
2019_10_29-AM-09_58_48
Last ObjectModification:
2019_02_02-PM-02_07_41
Theory : reals
Home
Index