Nuprl Lemma : ireal-approx-radd-int
∀[x,y:ℝ]. ∀[j:ℕ]. ∀[M:ℕ+]. ∀[a,n:ℤ]. (j-approx(x;M;a)
⇒ j-approx(x + r(n);M;a + (2 * n * M)))
Proof
Definitions occuring in Statement :
ireal-approx: j-approx(x;M;z)
,
radd: a + b
,
int-to-real: r(n)
,
real: ℝ
,
nat_plus: ℕ+
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
multiply: n * m
,
add: n + m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
ireal-approx: j-approx(x;M;z)
,
prop: ℙ
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
all: ∀x:A. B[x]
,
le: A ≤ B
,
and: P ∧ Q
,
not: ¬A
,
false: False
,
nat: ℕ
,
nat_plus: ℕ+
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
ge: i ≥ j
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
subtype_rel: A ⊆r B
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
rdiv: (x/y)
,
req_int_terms: t1 ≡ t2
Lemmas referenced :
ireal-approx_wf,
less_than'_wf,
rsub_wf,
rdiv_wf,
int-to-real_wf,
rless-int,
nat_plus_properties,
nat_properties,
decidable__lt,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
rless_wf,
rabs_wf,
radd_wf,
itermMultiply_wf,
int_term_value_mul_lemma,
nat_plus_wf,
nat_wf,
real_wf,
rmul_preserves_req,
rmul_wf,
rinv_wf2,
rneq_functionality,
rmul-int,
req_weakening,
rneq-int,
intformeq_wf,
int_formula_prop_eq_lemma,
equal-wf-T-base,
itermSubtract_wf,
req-iff-rsub-is-0,
rmul-one,
itermAdd_wf,
radd_comm,
req_functionality,
req_transitivity,
rmul_functionality,
rinv_functionality2,
req_inversion,
rinv-of-rmul,
rmul-rinv,
rmul-rinv3,
radd-int,
radd_functionality,
real_polynomial_null,
real_term_value_sub_lemma,
real_term_value_mul_lemma,
real_term_value_var_lemma,
real_term_value_const_lemma,
real_term_value_add_lemma,
rleq_functionality,
rabs_functionality,
rsub_functionality
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
sqequalHypSubstitution,
extract_by_obid,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
sqequalRule,
lambdaEquality,
dependent_functionElimination,
productElimination,
independent_pairEquality,
because_Cache,
applyEquality,
setElimination,
rename,
independent_isectElimination,
inrFormation,
independent_functionElimination,
natural_numberEquality,
unionElimination,
approximateComputation,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
addEquality,
multiplyEquality,
minusEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[x,y:\mBbbR{}]. \mforall{}[j:\mBbbN{}]. \mforall{}[M:\mBbbN{}\msupplus{}]. \mforall{}[a,n:\mBbbZ{}]. (j-approx(x;M;a) {}\mRightarrow{} j-approx(x + r(n);M;a + (2 * n * M)))
Date html generated:
2018_05_22-PM-01_59_36
Last ObjectModification:
2017_10_25-PM-01_04_53
Theory : reals
Home
Index