Nuprl Lemma : lower-right-endpoint-rless

a,b:ℝ. ∀n:ℕ+.  ((a < b)  ((a < lower-right-endpoint(a;b;n)) ∧ (lower-right-endpoint(a;b;n) < b)))


Proof




Definitions occuring in Statement :  lower-right-endpoint: lower-right-endpoint(a;b;n) rless: x < y real: nat_plus: + all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B lower-right-endpoint: lower-right-endpoint(a;b;n) member: t ∈ T prop: uall: [x:A]. B[x] int_nzero: -o nat_plus: + nequal: a ≠ b ∈  rless: x < y sq_exists: x:{A| B[x]} not: ¬A false: False uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B guard: {T} rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) rdiv: (x/y) rge: x ≥ y
Lemmas referenced :  rless_wf nat_plus_wf real_wf int-rdiv_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base equal-wf-T-base nequal_wf radd_wf int-rmul_wf rdiv_wf int-to-real_wf rless-int decidable__lt intformnot_wf int_formula_prop_not_lemma rmul_wf rmul_preserves_rless rinv_wf2 rneq_functionality radd-int req_weakening rneq-int rless-implies-rless real_term_polynomial itermSubtract_wf itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_mul_lemma req-iff-rsub-is-0 rsub_wf rless_functionality int-rdiv-req rdiv_functionality radd_functionality int-rmul-req req_transitivity rmul_functionality rmul-rinv3 req_inversion rless_functionality_wrt_implies rleq_weakening_rless radd_functionality_wrt_rless2 rleq_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality addEquality setElimination rename because_Cache natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule computeAll baseApply closedConclusion baseClosed applyEquality independent_functionElimination inrFormation productElimination unionElimination addLevel levelHypothesis equalityTransitivity equalitySymmetry

Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    ((a  <  b)  {}\mRightarrow{}  ((a  <  lower-right-endpoint(a;b;n))  \mwedge{}  (lower-right-endpoint(a;b;n)  <  b)))



Date html generated: 2017_10_03-AM-09_32_11
Last ObjectModification: 2017_07_28-AM-07_50_34

Theory : reals


Home Index