Nuprl Lemma : nat-int-retraction-reals

r:(ℕ ⟶ ℤ) ⟶ ℝ. ∀x:ℝ(x (r n.(x (n 1)))))


Proof




Definitions occuring in Statement :  req: y real: nat: all: x:A. B[x] exists: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: int_upper: {i...} le: A ≤ B false: False not: ¬A implies:  Q exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q real: uiff: uiff(P;Q) nat: decidable: Dec(P) or: P ∨ Q subtract: m top: Top
Lemmas referenced :  real-regular less_than_wf real_wf nat-int-retraction-reals-1 false_wf le_wf all_wf squash_wf true_wf req_wf iff_weakening_equal req-iff-bdd-diff accelerate_wf regular-int-seq_wf nat_plus_wf nat_wf decidable__lt not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel trivial-bdd-diff bdd-diff_functionality bdd-diff_weakening accelerate-bdd-diff
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed hypothesis dependent_functionElimination productElimination dependent_pairFormation applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality because_Cache independent_isectElimination independent_functionElimination setElimination rename functionExtensionality intEquality addEquality unionElimination voidElimination isect_memberEquality voidEquality minusEquality

Latex:
\mexists{}r:(\mBbbN{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbR{}.  \mforall{}x:\mBbbR{}.  (x  =  (r  (\mlambda{}n.(x  (n  +  1)))))



Date html generated: 2017_10_03-AM-10_07_31
Last ObjectModification: 2017_07_05-PM-03_57_44

Theory : reals


Home Index