Nuprl Lemma : nat-int-retraction-reals
∃r:(ℕ ⟶ ℤ) ⟶ ℝ. ∀x:ℝ. (x = (r (λn.(x (n + 1)))))
Proof
Definitions occuring in Statement : 
req: x = y, 
real: ℝ, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
prop: ℙ, 
int_upper: {i...}, 
le: A ≤ B, 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
real: ℝ, 
uiff: uiff(P;Q), 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
subtract: n - m, 
top: Top
Lemmas referenced : 
real-regular, 
less_than_wf, 
real_wf, 
nat-int-retraction-reals-1, 
false_wf, 
le_wf, 
all_wf, 
squash_wf, 
true_wf, 
req_wf, 
iff_weakening_equal, 
req-iff-bdd-diff, 
accelerate_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
nat_wf, 
decidable__lt, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
trivial-bdd-diff, 
bdd-diff_functionality, 
bdd-diff_weakening, 
accelerate-bdd-diff
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
hypothesis, 
dependent_functionElimination, 
productElimination, 
dependent_pairFormation, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
setElimination, 
rename, 
functionExtensionality, 
intEquality, 
addEquality, 
unionElimination, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
minusEquality
Latex:
\mexists{}r:(\mBbbN{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbR{}.  \mforall{}x:\mBbbR{}.  (x  =  (r  (\mlambda{}n.(x  (n  +  1)))))
 Date html generated: 
2017_10_03-AM-10_07_31
 Last ObjectModification: 
2017_07_05-PM-03_57_44
Theory : reals
Home
Index