Nuprl Lemma : nat-int-retraction-reals-1
∀k:{2...}. ∃r:(ℕ ⟶ ℤ) ⟶ ℝ. ∀x:ℝ. (accelerate(k;x) = (r (λn.(x (n + 1)))) ∈ ℝ)
Proof
Definitions occuring in Statement : 
accelerate: accelerate(k;f), 
real: ℝ, 
int_upper: {i...}, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
nat_plus: ℕ+, 
int_upper: {i...}, 
le: A ≤ B, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
top: Top, 
less_than': less_than'(a;b), 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
nat: ℕ, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
so_lambda: λ2x.t[x], 
real: ℝ, 
subtract: n - m, 
so_apply: x[s], 
squash: ↓T, 
less_than: a < b
Lemmas referenced : 
int-int-retraction-reals-1, 
real-regular, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
real_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
nat_wf, 
le_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
subtract_wf, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
all_wf, 
accelerate_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-associates, 
add-zero, 
int_upper_wf, 
squash_wf, 
true_wf, 
minus-minus, 
add-swap, 
iff_weakening_equal, 
subtract-add-cancel, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
dependent_set_memberEquality, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
dependent_pairFormation, 
functionExtensionality, 
functionEquality, 
because_Cache, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
approximateComputation, 
int_eqEquality, 
addEquality, 
minusEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}k:\{2...\}.  \mexists{}r:(\mBbbN{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbR{}.  \mforall{}x:\mBbbR{}.  (accelerate(k;x)  =  (r  (\mlambda{}n.(x  (n  +  1)))))
 Date html generated: 
2017_10_03-AM-10_07_06
 Last ObjectModification: 
2017_07_05-PM-03_52_56
Theory : reals
Home
Index