Nuprl Lemma : quadratic2-zero
∀[a,b,c:ℝ].  (quadratic2(a;b;c) = r0) supposing ((b ≤ r0) and (c = r0) and a ≠ r0)
Proof
Definitions occuring in Statement : 
quadratic2: quadratic2(a;b;c)
, 
rneq: x ≠ y
, 
rleq: x ≤ y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
quadratic2: quadratic2(a;b;c)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
nonneg-poly: nonneg-poly(p)
, 
bl-all: (∀x∈L.P[x])_b
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right
, 
add_ipoly: add_ipoly(p;q)
, 
add-ipoly-prepend: add-ipoly-prepend(p;q;l)
, 
itermMultiply: left (*) right
, 
mul_ipoly: mul_ipoly(p;q)
, 
itermVar: vvar
, 
cons: [a / b]
, 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L)
, 
nil: []
, 
it: ⋅
, 
mul-mono-poly: mul-mono-poly(m;p)
, 
mul-monomials: mul-monomials(m1;m2)
, 
merge-int-accum: merge-int-accum(as;bs)
, 
eager-accum: eager-accum(x,a.f[x; a];y;l)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
insert-int: insert-int(x;l)
, 
minus-poly: minus-poly(p)
, 
map: map(f;as)
, 
itermConstant: "const"
, 
rev-append: rev(as) + bs
, 
list_accum: list_accum, 
band: p ∧b q
, 
nonneg-monomial: nonneg-monomial(m)
, 
le_int: i ≤z j
, 
bnot: ¬bb
, 
lt_int: i <z j
, 
bfalse: ff
, 
btrue: tt
, 
even-int-list: even-int-list(L)
, 
bor: p ∨bq
, 
null: null(as)
, 
tl: tl(l)
, 
pi2: snd(t)
, 
eq_int: (i =z j)
, 
hd: hd(l)
, 
pi1: fst(t)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
guard: {T}
, 
rdiv: (x/y)
Lemmas referenced : 
sq_stable__req, 
quadratic2_wf, 
rmul_preserves_rless, 
int-to-real_wf, 
rless-int, 
rless_wf, 
rmul_wf, 
rleq_wf, 
req_wf, 
rneq_wf, 
real_wf, 
rsub_wf, 
real-term-nonneg, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
req-iff-rsub-is-0, 
rdiv_wf, 
rminus_wf, 
rsqrt_wf, 
square-nonneg, 
rabs_wf, 
rleq_functionality, 
req_weakening, 
rsub_functionality, 
rmul_functionality, 
req_functionality, 
real_polynomial_null, 
rless_functionality, 
rdiv_functionality, 
rsqrt_functionality, 
rsqrt_square, 
rinv_wf2, 
itermMinus_wf, 
rabs-of-nonpos, 
req_transitivity, 
rinv-of-rmul, 
real_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
unionElimination, 
inlFormation_alt, 
dependent_functionElimination, 
natural_numberEquality, 
productElimination, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
inrFormation_alt, 
imageElimination, 
inhabitedIsType, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
applyEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
approximateComputation
Latex:
\mforall{}[a,b,c:\mBbbR{}].    (quadratic2(a;b;c)  =  r0)  supposing  ((b  \mleq{}  r0)  and  (c  =  r0)  and  a  \mneq{}  r0)
Date html generated:
2019_10_30-AM-07_59_47
Last ObjectModification:
2019_10_10-AM-10_51_23
Theory : reals
Home
Index