Nuprl Lemma : quadratic2-zero
∀[a,b,c:ℝ].  (quadratic2(a;b;c) = r0) supposing ((b ≤ r0) and (c = r0) and a ≠ r0)
Proof
Definitions occuring in Statement : 
quadratic2: quadratic2(a;b;c), 
rneq: x ≠ y, 
rleq: x ≤ y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
rneq: x ≠ y, 
or: P ∨ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
prop: ℙ, 
quadratic2: quadratic2(a;b;c), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
nonneg-poly: nonneg-poly(p), 
bl-all: (∀x∈L.P[x])_b, 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
int_term_to_ipoly: int_term_to_ipoly(t), 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right, 
add_ipoly: add_ipoly(p;q), 
add-ipoly-prepend: add-ipoly-prepend(p;q;l), 
itermMultiply: left (*) right, 
mul_ipoly: mul_ipoly(p;q), 
itermVar: vvar, 
cons: [a / b], 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
nil: [], 
it: ⋅, 
mul-mono-poly: mul-mono-poly(m;p), 
mul-monomials: mul-monomials(m1;m2), 
merge-int-accum: merge-int-accum(as;bs), 
eager-accum: eager-accum(x,a.f[x; a];y;l), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
insert-int: insert-int(x;l), 
minus-poly: minus-poly(p), 
map: map(f;as), 
itermConstant: "const", 
rev-append: rev(as) + bs, 
list_accum: list_accum, 
band: p ∧b q, 
nonneg-monomial: nonneg-monomial(m), 
le_int: i ≤z j, 
bnot: ¬bb, 
lt_int: i <z j, 
bfalse: ff, 
btrue: tt, 
even-int-list: even-int-list(L), 
bor: p ∨bq, 
null: null(as), 
tl: tl(l), 
pi2: snd(t), 
eq_int: (i =z j), 
hd: hd(l), 
pi1: fst(t), 
false: False, 
not: ¬A, 
top: Top, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
guard: {T}, 
rdiv: (x/y)
Lemmas referenced : 
sq_stable__req, 
quadratic2_wf, 
rmul_preserves_rless, 
int-to-real_wf, 
rless-int, 
rless_wf, 
rmul_wf, 
rleq_wf, 
req_wf, 
rneq_wf, 
real_wf, 
rsub_wf, 
real-term-nonneg, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
req-iff-rsub-is-0, 
rdiv_wf, 
rminus_wf, 
rsqrt_wf, 
square-nonneg, 
rabs_wf, 
rleq_functionality, 
req_weakening, 
rsub_functionality, 
rmul_functionality, 
req_functionality, 
real_polynomial_null, 
rless_functionality, 
rdiv_functionality, 
rsqrt_functionality, 
rsqrt_square, 
rinv_wf2, 
itermMinus_wf, 
rabs-of-nonpos, 
req_transitivity, 
rinv-of-rmul, 
real_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
unionElimination, 
inlFormation_alt, 
dependent_functionElimination, 
natural_numberEquality, 
productElimination, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
inrFormation_alt, 
imageElimination, 
inhabitedIsType, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
applyEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
approximateComputation
Latex:
\mforall{}[a,b,c:\mBbbR{}].    (quadratic2(a;b;c)  =  r0)  supposing  ((b  \mleq{}  r0)  and  (c  =  r0)  and  a  \mneq{}  r0)
 Date html generated: 
2019_10_30-AM-07_59_47
 Last ObjectModification: 
2019_10_10-AM-10_51_23
Theory : reals
Home
Index