Nuprl Lemma : rmul-is-negative1

x,y:ℝ.  (((x y) < r0)  (x ≠ r0 ∨ y ≠ r0))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rless: x < y rmul: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y member: t ∈ T uall: [x:A]. B[x] prop: int-to-real: r(n) rmul: b has-value: (a)↓ exists: x:A. B[x] reg-seq-mul: reg-seq-mul(x;y) accelerate: accelerate(k;f) uimplies: supposing a real: nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top false: False subtype_rel: A ⊆B nat: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) int_upper: {i...} guard: {T} sq_type: SQType(T) nequal: a ≠ b ∈  true: True int_nzero: -o ge: i ≥  squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} less_than': less_than'(a;b) absval: |i| cand: c∧ B rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rless_wf rmul_wf int-to-real_wf real_wf real-has-value value-type-has-value int-value-type imax_wf absval_wf nat_plus_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than rless-iff2 false_wf int_term_value_add_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma itermAdd_wf intformle_wf itermVar_wf itermMultiply_wf intformeq_wf intformand_wf add-is-int-iff int_upper_properties int_entire_a nequal_wf int_subtype_base subtype_base_sq mul_nzero mul_nat_plus istype-le decidable__le nat_properties imax_nat int_seg_properties int_seg_cases int_seg_subtype_special decidable__equal_int div_is_zero nat_plus_subtype_nat mul_preserves_le zero-div-rem int_term_value_minus_lemma itermMinus_wf absval_ubound div_absval_bound
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality inhabitedIsType sqequalRule callbyvalueReduce productElimination intEquality independent_isectElimination multiplyEquality addEquality applyEquality setElimination rename dependent_set_memberEquality_alt dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination equalityTransitivity equalitySymmetry because_Cache unionIsType inlFormation_alt inrFormation_alt independent_pairFormation int_eqEquality baseApply promote_hyp pointwiseFunctionality applyLambdaEquality sqequalBase baseClosed equalityIstype cumulativity instantiate closedConclusion divideEquality minusEquality productIsType imageElimination hypothesis_subsumption

Latex:
\mforall{}x,y:\mBbbR{}.    (((x  *  y)  <  r0)  {}\mRightarrow{}  (x  \mneq{}  r0  \mvee{}  y  \mneq{}  r0))



Date html generated: 2019_10_29-AM-10_05_18
Last ObjectModification: 2019_04_01-PM-11_22_07

Theory : reals


Home Index