Nuprl Lemma : rmul-is-negative1
∀x,y:ℝ.  (((x * y) < r0) 
⇒ (x ≠ r0 ∨ y ≠ r0))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
rless: x < y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
int-to-real: r(n)
, 
rmul: a * b
, 
has-value: (a)↓
, 
exists: ∃x:A. B[x]
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
accelerate: accelerate(k;f)
, 
uimplies: b supposing a
, 
real: ℝ
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
false: False
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
int_upper: {i...}
, 
guard: {T}
, 
sq_type: SQType(T)
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
int_nzero: ℤ-o
, 
ge: i ≥ j 
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
less_than': less_than'(a;b)
, 
absval: |i|
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rless_wf, 
rmul_wf, 
int-to-real_wf, 
real_wf, 
real-has-value, 
value-type-has-value, 
int-value-type, 
imax_wf, 
absval_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
rless-iff2, 
false_wf, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
intformle_wf, 
itermVar_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformand_wf, 
add-is-int-iff, 
int_upper_properties, 
int_entire_a, 
nequal_wf, 
int_subtype_base, 
subtype_base_sq, 
mul_nzero, 
mul_nat_plus, 
istype-le, 
decidable__le, 
nat_properties, 
imax_nat, 
int_seg_properties, 
int_seg_cases, 
int_seg_subtype_special, 
decidable__equal_int, 
div_is_zero, 
nat_plus_subtype_nat, 
mul_preserves_le, 
zero-div-rem, 
int_term_value_minus_lemma, 
itermMinus_wf, 
absval_ubound, 
div_absval_bound
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
inhabitedIsType, 
sqequalRule, 
callbyvalueReduce, 
productElimination, 
intEquality, 
independent_isectElimination, 
multiplyEquality, 
addEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt, 
independent_pairFormation, 
int_eqEquality, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
applyLambdaEquality, 
sqequalBase, 
baseClosed, 
equalityIstype, 
cumulativity, 
instantiate, 
closedConclusion, 
divideEquality, 
minusEquality, 
productIsType, 
imageElimination, 
hypothesis_subsumption
Latex:
\mforall{}x,y:\mBbbR{}.    (((x  *  y)  <  r0)  {}\mRightarrow{}  (x  \mneq{}  r0  \mvee{}  y  \mneq{}  r0))
Date html generated:
2019_10_29-AM-10_05_18
Last ObjectModification:
2019_04_01-PM-11_22_07
Theory : reals
Home
Index