Nuprl Lemma : rsqrt-unique2
∀[x:{x:ℝ| r0 ≤ x} ]. ∀[s:ℝ].  uiff((s * s) = x;¬¬((s = rsqrt(x)) ∨ (s = -(rsqrt(x)))))
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rleq: x ≤ y
, 
req: x = y
, 
rmul: a * b
, 
rminus: -(x)
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
real_term_value: real_term_value(f;t)
, 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right
, 
itermVar: vvar
, 
itermMinus: "-"num
, 
rev_uimplies: rev_uimplies(P;Q)
, 
stable: Stable{P}
Lemmas referenced : 
not_wf, 
or_wf, 
req_wf, 
rsqrt_wf, 
rleq_wf, 
int-to-real_wf, 
real_wf, 
rmul_wf, 
rminus_wf, 
req_witness, 
set_wf, 
false_wf, 
rless_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rleq_weakening_rless, 
rsqrt-unique, 
not-rless, 
rleq-implies-rleq, 
real_term_polynomial, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMinus_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
req-iff-rsub-is-0, 
rsub_wf, 
req-implies-req, 
itermMultiply_wf, 
real_term_value_mul_lemma, 
req_functionality, 
req_weakening, 
rminus_functionality, 
req_inversion, 
rminus-rminus, 
rmul_over_rminus, 
req_transitivity, 
uiff_transitivity, 
rsqrt_squared, 
rmul_functionality, 
double-negation-hyp-elim, 
stable_req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setEquality, 
productEquality, 
sqequalRule, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
unionElimination, 
independent_isectElimination, 
inlFormation, 
inrFormation, 
computeAll, 
int_eqEquality, 
intEquality, 
voidEquality
Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  \mforall{}[s:\mBbbR{}].    uiff((s  *  s)  =  x;\mneg{}\mneg{}((s  =  rsqrt(x))  \mvee{}  (s  =  -(rsqrt(x)))))
Date html generated:
2017_10_03-AM-10_43_22
Last ObjectModification:
2017_07_28-AM-08_18_31
Theory : reals
Home
Index