Nuprl Lemma : rsqrt-unique2

[x:{x:ℝr0 ≤ x} ]. ∀[s:ℝ].  uiff((s s) x;¬¬((s rsqrt(x)) ∨ (s -(rsqrt(x)))))


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y req: y rmul: b rminus: -(x) int-to-real: r(n) real: uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A or: P ∨ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} all: x:A. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top real_term_value: real_term_value(f;t) int_term_ind: int_term_ind itermSubtract: left (-) right itermVar: vvar itermMinus: "-"num rev_uimplies: rev_uimplies(P;Q) stable: Stable{P}
Lemmas referenced :  not_wf or_wf req_wf rsqrt_wf rleq_wf int-to-real_wf real_wf rmul_wf rminus_wf req_witness set_wf false_wf rless_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle rleq_weakening_rless rsqrt-unique not-rless rleq-implies-rleq real_term_polynomial itermSubtract_wf itermConstant_wf itermVar_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rsub_wf req-implies-req itermMultiply_wf real_term_value_mul_lemma req_functionality req_weakening rminus_functionality req_inversion rminus-rminus rmul_over_rminus req_transitivity uiff_transitivity rsqrt_squared rmul_functionality double-negation-hyp-elim stable_req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination hypothesisEquality setElimination rename dependent_set_memberEquality natural_numberEquality applyEquality lambdaEquality setEquality productEquality sqequalRule because_Cache dependent_functionElimination productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality unionElimination independent_isectElimination inlFormation inrFormation computeAll int_eqEquality intEquality voidEquality

Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  \mforall{}[s:\mBbbR{}].    uiff((s  *  s)  =  x;\mneg{}\mneg{}((s  =  rsqrt(x))  \mvee{}  (s  =  -(rsqrt(x)))))



Date html generated: 2017_10_03-AM-10_43_22
Last ObjectModification: 2017_07_28-AM-08_18_31

Theory : reals


Home Index