Nuprl Lemma : rv-circle-circle

n:{2...}. ∀a,b,c,d:ℝ^n. ∀p:{p:ℝ^n| ab=ap} . ∀q:{q:ℝ^n| cd=cq} . ∀x:{x:ℝ^n| cp=cx ∧ (c ≠ x ∧ x ≠ d ∧ c-x-d)))} .
y:{y:ℝ^n| aq=ay ∧ (a ≠ y ∧ y ≠ b ∧ a-y-b)))} .
  (a ≠  (∃u,v:{p:ℝ^n| ab=ap ∧ cd=cp} ((x ≠ d ∧ y ≠ b)  u ≠ v)))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n int_upper: {i...} all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] and: P ∧ Q cand: c∧ B prop: uall: [x:A]. B[x] subtype_rel: A ⊆B nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q real-vec-sep: a ≠ b uimplies: supposing a
Lemmas referenced :  rv-circle-circle-lemma3 real-vec-sep_wf exists_wf real-vec_wf int_upper_subtype_nat false_wf le_wf rv-congruent_wf set_wf not_wf rv-between_wf int_upper_wf rv-non-strict-between-iff rv-Tsep real-vec-sep-symmetry rv-between-symmetry real-vec-dist-be real-vec-dist_wf real_wf rleq_wf int-to-real_wf radd_wf radd-preserves-rless rminus_wf rmul_wf rless_wf rless_functionality req_weakening radd-zero-both rmul-zero-both radd_functionality rmul_functionality radd-int req_transitivity rminus-as-rmul req_inversion rmul-identity1 rmul-distrib2 radd-assoc
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination dependent_pairFormation sqequalRule independent_pairFormation productEquality isectElimination applyEquality because_Cache setElimination rename functionEquality setEquality dependent_set_memberEquality natural_numberEquality lambdaEquality voidElimination minusEquality addEquality independent_isectElimination addLevel

Latex:
\mforall{}n:\{2...\}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.  \mforall{}p:\{p:\mBbbR{}\^{}n|  ab=ap\}  .  \mforall{}q:\{q:\mBbbR{}\^{}n|  cd=cq\}  .  \mforall{}x:\{x:\mBbbR{}\^{}n| 
                                                                                                                                      cp=cx
                                                                                                                                      \mwedge{}  (\mneg{}(c  \mneq{}  x  \mwedge{}  x  \mneq{}  d  \mwedge{}  (\mneg{}c-x-d)))\}  \000C.
\mforall{}y:\{y:\mBbbR{}\^{}n|  aq=ay  \mwedge{}  (\mneg{}(a  \mneq{}  y  \mwedge{}  y  \mneq{}  b  \mwedge{}  (\mneg{}a-y-b)))\}  .
    (a  \mneq{}  c  {}\mRightarrow{}  (\mexists{}u,v:\{p:\mBbbR{}\^{}n|  ab=ap  \mwedge{}  cd=cp\}  .  ((x  \mneq{}  d  \mwedge{}  y  \mneq{}  b)  {}\mRightarrow{}  u  \mneq{}  v)))



Date html generated: 2016_10_26-AM-11_10_28
Last ObjectModification: 2016_10_04-PM-11_52_54

Theory : reals


Home Index