Nuprl Lemma : rv-line-circle-2

n:ℕ. ∀a,b:ℝ^n. ∀p:{p:ℝ^n| ab ≥ ap} . ∀q:{q:ℝ^n| aq ≥ ab} .
  (a ≠  p ≠  (∃u:{u:ℝ^n| ab=au ∧ q_u_p} (∃v:{ℝ^n| (ab=av ∧ q_p_v)})))


Proof




Definitions occuring in Statement :  rv-be: a_b_c rv-ge: cd ≥ ab real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n nat: all: x:A. B[x] sq_exists: x:{A| B[x]} exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  guard: {T} uiff: uiff(P;Q) rv-congruent: ab=cd false: False rev_implies:  Q iff: ⇐⇒ Q not: ¬A so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] sq_exists: x:{A| B[x]} exists: x:A. B[x] squash: T uimplies: supposing a sq_stable: SqStable(P) prop: subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q member: t ∈ T all: x:A. B[x] rv-ge: cd ≥ ab rv-be: a_b_c
Lemmas referenced :  radd-zero-both rmul-zero-both radd-int rmul_functionality rmul-distrib2 rmul-identity1 radd-assoc rminus-as-rmul req_transitivity rless_irreflexivity rless_transitivity1 rmul_wf rminus_wf radd-preserves-rless rless_functionality real-vec-dist-nonneg req_weakening radd_functionality req_inversion req_functionality radd_wf rless_wf rv-T-dist rv-T-iff nat_wf exists_wf set_wf rv-between_wf real-vec-sep_wf not_wf rv-congruent_wf real-vec_wf sq_exists_wf not-rless int-to-real_wf rleq_wf real_wf real-vec-dist_wf sq_stable__rleq rv-line-circle-1
Rules used in proof :  promote_hyp addEquality minusEquality comment voidElimination independent_pairFormation productEquality dependent_pairFormation productElimination imageElimination baseClosed imageMemberEquality independent_isectElimination natural_numberEquality setEquality lambdaEquality applyEquality isectElimination independent_functionElimination because_Cache rename setElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbR{}\^{}n.  \mforall{}p:\{p:\mBbbR{}\^{}n|  ab  \mgeq{}  ap\}  .  \mforall{}q:\{q:\mBbbR{}\^{}n|  aq  \mgeq{}  ab\}  .
    (a  \mneq{}  b  {}\mRightarrow{}  p  \mneq{}  q  {}\mRightarrow{}  (\mexists{}u:\{u:\mBbbR{}\^{}n|  ab=au  \mwedge{}  q\_u\_p\}  .  (\mexists{}v:\{\mBbbR{}\^{}n|  (ab=av  \mwedge{}  q\_p\_v)\})))



Date html generated: 2016_10_28-AM-07_39_26
Last ObjectModification: 2016_10_27-PM-01_32_12

Theory : reals


Home Index