Nuprl Lemma : C_TYPE_eq_fun_wf
∀[a:C_TYPE()]. (C_TYPE_eq_fun(a) ∈ C_TYPE() ⟶ 𝔹)
Proof
Definitions occuring in Statement : 
C_TYPE_eq_fun: C_TYPE_eq_fun(a), 
C_TYPE: C_TYPE(), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
C_TYPE_eq_fun: C_TYPE_eq_fun(a), 
so_lambda: λ2x y.t[x; y], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
nat: ℕ, 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2;s3], 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
squash: ↓T, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top
Lemmas referenced : 
pi2_wf, 
subtype_rel-equal, 
top_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
eq_atom_wf, 
subtype_rel_product, 
pi1_wf_top, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
decidable__equal_int_seg, 
sq_stable__l_member, 
select_wf, 
band_wf, 
bl-all_wf, 
upto_wf, 
int_seg_wf, 
C_Pointer-to_wf, 
C_Pointer?_wf, 
C_Array-elems_wf, 
nat_wf, 
C_Array-length_wf, 
C_Array?_wf, 
list_wf, 
l_member_wf, 
l_all_wf2, 
bfalse_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_eq_int, 
C_Struct-fields_wf, 
length_wf, 
eq_int_wf, 
eqtt_to_assert, 
C_Struct?_wf, 
C_Int?_wf, 
C_Void?_wf, 
bool_wf, 
C_TYPE_wf, 
C_TYPE_ind_wf_simple
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
sqequalRule, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
productEquality, 
atomEquality, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
equalityEquality, 
spreadEquality, 
setElimination, 
rename, 
setEquality, 
applyEquality, 
axiomEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[a:C\_TYPE()].  (C\_TYPE\_eq\_fun(a)  \mmember{}  C\_TYPE()  {}\mrightarrow{}  \mBbbB{})
 Date html generated: 
2016_05_16-AM-08_45_47
 Last ObjectModification: 
2016_01_17-AM-09_43_48
Theory : C-semantics
Home
Index