Nuprl Lemma : at_AFbar

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀n:ℕ. ∀s:AF-spread-law(x,y.R[x;y])-consistent-seq(n).
    ((AFbar() s)  {a:T| AF-spread-law(x,y.R[x;y]) (inl a)} ))


Proof




Definitions occuring in Statement :  AFbar: AFbar() AF-spread-law: AF-spread-law(x,y.R[x; y]) consistent-seq: R-consistent-seq(n) nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q unit: Unit set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] inl: inl x union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q not: ¬A false: False AFbar: AFbar() AF-spread-law: AF-spread-law(x,y.R[x; y]) isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt and: P ∧ Q cand: c∧ B true: True consistent-seq: R-consistent-seq(n) int_seg: {i..j-} nat: lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) isr: isr(x) bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] guard: {T} top: Top
Lemmas referenced :  AFbar_wf AF-spread-law_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt and_wf le_wf less_than_wf unit_wf2 true_wf equal_wf set_wf consistent-seq_wf nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation sqequalRule setElimination rename productElimination independent_pairFormation independent_functionElimination natural_numberEquality applyEquality because_Cache dependent_set_memberEquality dependent_functionElimination unionElimination voidElimination independent_isectElimination addEquality minusEquality unionEquality cumulativity productEquality equalityTransitivity equalitySymmetry lambdaEquality inlEquality universeEquality functionEquality isect_memberEquality voidEquality intEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}n:\mBbbN{}.  \mforall{}s:AF-spread-law(x,y.R[x;y])-consistent-seq(n).
        ((AFbar()  n  s)  {}\mRightarrow{}  (\mneg{}\{a:T|  AF-spread-law(x,y.R[x;y])  n  s  (inl  a)\}  ))



Date html generated: 2017_04_14-AM-07_27_48
Last ObjectModification: 2017_02_27-PM-02_56_38

Theory : bar-induction


Home Index