Nuprl Lemma : at_AFbar
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀n:ℕ. ∀s:AF-spread-law(x,y.R[x;y])-consistent-seq(n).
    ((AFbar() n s) 
⇒ (¬{a:T| AF-spread-law(x,y.R[x;y]) n s (inl a)} ))
Proof
Definitions occuring in Statement : 
AFbar: AFbar()
, 
AF-spread-law: AF-spread-law(x,y.R[x; y])
, 
consistent-seq: R-consistent-seq(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
AFbar: AFbar()
, 
AF-spread-law: AF-spread-law(x,y.R[x; y])
, 
isl: isl(x)
, 
outl: outl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
true: True
, 
consistent-seq: R-consistent-seq(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
isr: isr(x)
, 
bfalse: ff
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
top: Top
Lemmas referenced : 
AFbar_wf, 
AF-spread-law_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
le-add-cancel-alt, 
and_wf, 
le_wf, 
less_than_wf, 
unit_wf2, 
true_wf, 
equal_wf, 
set_wf, 
consistent-seq_wf, 
nat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
sqequalRule, 
setElimination, 
rename, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
independent_isectElimination, 
addEquality, 
minusEquality, 
unionEquality, 
cumulativity, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
inlEquality, 
universeEquality, 
functionEquality, 
isect_memberEquality, 
voidEquality, 
intEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}n:\mBbbN{}.  \mforall{}s:AF-spread-law(x,y.R[x;y])-consistent-seq(n).
        ((AFbar()  n  s)  {}\mRightarrow{}  (\mneg{}\{a:T|  AF-spread-law(x,y.R[x;y])  n  s  (inl  a)\}  ))
Date html generated:
2017_04_14-AM-07_27_48
Last ObjectModification:
2017_02_27-PM-02_56_38
Theory : bar-induction
Home
Index