Nuprl Lemma : at_cWObar

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀n:ℕ. ∀s:cWO-rel(R)-consistent-seq(n).  ((cWObar() s)  {a:T| cWO-rel(R) (inl a)} ))


Proof




Definitions occuring in Statement :  cWObar: cWObar() cWO-rel: cWO-rel(R) consistent-seq: R-consistent-seq(n) nat: uall: [x:A]. B[x] prop: all: x:A. B[x] not: ¬A implies:  Q unit: Unit set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] inl: inl x union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q not: ¬A false: False cWObar: cWObar() cWO-rel: cWO-rel(R) isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt and: P ∧ Q cand: c∧ B true: True consistent-seq: R-consistent-seq(n) int_seg: {i..j-} nat: lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) isr: isr(x) bfalse: ff so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cWObar_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt and_wf le_wf less_than_wf unit_wf2 true_wf equal_wf set_wf cWO-rel_wf consistent-seq_wf nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation setElimination rename sqequalRule independent_functionElimination productElimination independent_pairFormation natural_numberEquality applyEquality because_Cache dependent_set_memberEquality dependent_functionElimination unionElimination voidElimination independent_isectElimination addEquality lambdaEquality isect_memberEquality voidEquality minusEquality intEquality unionEquality cumulativity productEquality equalityTransitivity equalitySymmetry functionExtensionality inlEquality universeEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}n:\mBbbN{}.  \mforall{}s:cWO-rel(R)-consistent-seq(n).    ((cWObar()  n  s)  {}\mRightarrow{}  (\mneg{}\{a:T|  cWO-rel(R)  n  s  (inl  a)\}  ))



Date html generated: 2017_04_14-AM-07_28_20
Last ObjectModification: 2017_02_27-PM-02_56_44

Theory : bar-induction


Home Index