Nuprl Lemma : baire-diff-from-diff

a:ℕ ⟶ ℕ. ∀n:ℕ.  ((a n) (baire-diff-from(a;n) n) ∈ ℕ))


Proof




Definitions occuring in Statement :  baire-diff-from: baire-diff-from(a;k) nat: all: x:A. B[x] not: ¬A apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  int_upper: {i...} nequal: a ≠ b ∈  assert: b bnot: ¬bb rev_implies:  Q iff: ⇐⇒ Q true: True squash: T sq_type: SQType(T) bfalse: ff or: P ∨ Q decidable: Dec(P) top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  guard: {T} subtype_rel: A ⊆B prop: not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat-pred: n-1 ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q nat: uall: [x:A]. B[x] member: t ∈ T baire-diff-from: baire-diff-from(a;k) all: x:A. B[x]
Lemmas referenced :  add_nat_wf int_term_value_subtract_lemma itermSubtract_wf int_upper_properties subtract_wf zero-add nequal-le-implies false_wf int_upper_subtype_nat not_assert_elim neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal btrue_neq_bfalse assert_elim bnot_wf bfalse_wf and_wf iff_weakening_equal btrue_wf eq_int_eq_true int_subtype_base subtype_base_sq eqff_to_assert int_formula_prop_not_lemma int_formula_prop_le_lemma intformnot_wf intformle_wf decidable__le equal_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties nat_wf le_wf assert_of_eq_int eq_int_wf assert_of_le_int eqtt_to_assert bool_wf le_int_wf
Rules used in proof :  functionEquality hypothesis_subsumption int_eqReduceFalseSq promote_hyp universeEquality baseClosed imageMemberEquality imageElimination independent_functionElimination cumulativity instantiate addEquality computeAll voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation applyLambdaEquality functionExtensionality independent_pairFormation dependent_set_memberEquality applyEquality int_eqReduceTrueSq natural_numberEquality independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination because_Cache hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n:\mBbbN{}.    (\mneg{}((a  n)  =  (baire-diff-from(a;n)  n)))



Date html generated: 2017_04_21-AM-11_24_10
Last ObjectModification: 2017_04_20-PM-06_29_52

Theory : continuity


Home Index