Nuprl Lemma : nsub_finite'

n:ℕfinite'(ℕn)


Proof




Definitions occuring in Statement :  finite': finite'(T) int_seg: {i..j-} nat: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  finite': finite'(T) surject: Surj(A;B;f) all: x:A. B[x] implies:  Q member: t ∈ T nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B less_than: a < b squash: T inject: Inj(A;B;f) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  decidable__exists_int_seg equal_wf int_seg_wf decidable__equal_int_seg injection_le subtract_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf inject_wf nat_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma decidable__lt less_than_wf set_subtype_base lelt_wf int_subtype_base eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int equal-wf-T-base assert_wf bnot_wf not_wf uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  cut thin instantiate introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination natural_numberEquality setElimination rename because_Cache hypothesis isectElimination Error :lambdaEquality_alt,  applyEquality hypothesisEquality Error :inhabitedIsType,  independent_functionElimination unionElimination Error :dependent_set_memberEquality_alt,  productElimination independent_isectElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  Error :functionIsType,  equalityTransitivity equalitySymmetry Error :productIsType,  Error :equalityIsType4,  intEquality applyLambdaEquality imageElimination equalityElimination Error :equalityIsType1,  promote_hyp cumulativity baseClosed baseApply closedConclusion

Latex:
\mforall{}n:\mBbbN{}.  finite'(\mBbbN{}n)



Date html generated: 2019_06_20-PM-02_18_46
Last ObjectModification: 2018_10_06-AM-11_24_02

Theory : equipollence!!cardinality!


Home Index