Nuprl Lemma : summand-le-sum
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  ∀[i:ℕn]. (f[i] ≤ Σ(f[x] | x < n)) supposing ∀x:ℕn. (0 ≤ f[x])
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
isolate_summand, 
le_wf, 
le_witness_for_triv, 
int_seg_wf, 
istype-le, 
istype-int, 
istype-nat, 
sum_wf, 
ifthenelse_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
istype-false, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
le_functionality, 
le_weakening, 
add_functionality_wrt_le, 
non_neg_sum
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
isect_memberEquality_alt, 
productElimination, 
equalityTransitivity, 
independent_isectElimination, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
addEquality, 
lambdaEquality_alt, 
intEquality, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
independent_pairFormation, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
imageElimination, 
dependent_set_memberEquality_alt, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
productIsType, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    \mforall{}[i:\mBbbN{}n].  (f[i]  \mleq{}  \mSigma{}(f[x]  |  x  <  n))  supposing  \mforall{}x:\mBbbN{}n.  (0  \mleq{}  f[x])
Date html generated:
2020_05_19-PM-09_41_36
Last ObjectModification:
2020_01_23-PM-00_39_10
Theory : int_2
Home
Index