Nuprl Lemma : summand-le-sum

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  ∀[i:ℕn]. (f[i] ≤ Σ(f[x] x < n)) supposing ∀x:ℕn. (0 ≤ f[x])


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_apply: x[s] le: A ≤ B and: P ∧ Q all: x:A. B[x] nat: int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2x.t[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  less_than': less_than'(a;b) false: False not: ¬A bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b less_than: a < b squash: T ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  isolate_summand le_wf le_witness_for_triv int_seg_wf istype-le istype-int istype-nat sum_wf ifthenelse_wf eq_int_wf eqtt_to_assert assert_of_eq_int istype-false eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf le_functionality le_weakening add_functionality_wrt_le non_neg_sum
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality hyp_replacement equalitySymmetry applyLambdaEquality applyEquality because_Cache sqequalRule isect_memberEquality_alt productElimination equalityTransitivity independent_isectElimination isectIsTypeImplies inhabitedIsType functionIsType universeIsType natural_numberEquality setElimination rename addEquality lambdaEquality_alt intEquality lambdaFormation_alt unionElimination equalityElimination independent_pairFormation dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination imageElimination dependent_set_memberEquality_alt approximateComputation int_eqEquality Error :memTop,  productIsType pointwiseFunctionality baseApply closedConclusion baseClosed

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    \mforall{}[i:\mBbbN{}n].  (f[i]  \mleq{}  \mSigma{}(f[x]  |  x  <  n))  supposing  \mforall{}x:\mBbbN{}n.  (0  \mleq{}  f[x])



Date html generated: 2020_05_19-PM-09_41_36
Last ObjectModification: 2020_01_23-PM-00_39_10

Theory : int_2


Home Index