Nuprl Lemma : test-mutual-corec-ext
test-mutual-corec() ≡ λi.if (i =z 0)
                         then Unit + (test-mutual-corec() 0 × ((test-mutual-corec() 1) List))
                         else Unit + (test-mutual-corec() 1 × ((test-mutual-corec() 0) List))
                         fi 
Proof
Definitions occuring in Statement : 
test-mutual-corec: test-mutual-corec()
, 
list: T List
, 
k-ext: A ≡ B
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
unit: Unit
, 
apply: f a
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
k-monotone: k-Monotone(T.F[T])
, 
k-subtype: A ⊆ B
, 
decidable: Dec(P)
, 
eq_int: (i =z j)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
strong-type-continuous: Continuous+(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
test-mutual-corec: test-mutual-corec()
Lemmas referenced : 
mutual-corec-ext2, 
false_wf, 
le_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
unit_wf2, 
int_seg_wf, 
lelt_wf, 
list_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
decidable__equal_int, 
int_subtype_base, 
int_seg_properties, 
subtype_rel_union, 
subtype_rel_product, 
subtype_rel_list, 
int_seg_subtype, 
int_seg_cases, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
k-subtype_wf, 
strong-continuous-union, 
continuous-constant, 
strong-continuous-product, 
continuous-id, 
strong-continuous-list, 
subtype_rel_weakening, 
nat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
unionEquality, 
productEquality, 
applyEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
intEquality, 
hypothesis_subsumption, 
addEquality, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
axiomEquality, 
isectEquality
Latex:
test-mutual-corec()  \mequiv{}  \mlambda{}i.if  (i  =\msubz{}  0)
                                                  then  Unit  +  (test-mutual-corec()  0  \mtimes{}  ((test-mutual-corec()  1)  List))
                                                  else  Unit  +  (test-mutual-corec()  1  \mtimes{}  ((test-mutual-corec()  0)  List))
                                                  fi 
Date html generated:
2018_05_21-PM-00_31_44
Last ObjectModification:
2017_10_18-PM-06_50_26
Theory : int_2
Home
Index