Nuprl Lemma : test-mutual-corec-ext

test-mutual-corec() ≡ λi.if (i =z 0)
                         then Unit (test-mutual-corec() 0 × ((test-mutual-corec() 1) List))
                         else Unit (test-mutual-corec() 1 × ((test-mutual-corec() 0) List))
                         fi 


Proof




Definitions occuring in Statement :  test-mutual-corec: test-mutual-corec() list: List k-ext: A ≡ B ifthenelse: if then else fi  eq_int: (i =z j) unit: Unit apply: a lambda: λx.A[x] product: x:A × B[x] union: left right natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_lambda: λ2x.t[x] int_seg: {i..j-} all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a lelt: i ≤ j < k less_than: a < b squash: T true: True bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtype_rel: A ⊆B so_apply: x[s] k-monotone: k-Monotone(T.F[T]) k-subtype: A ⊆ B decidable: Dec(P) eq_int: (i =z j) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) test-mutual-corec: test-mutual-corec()
Lemmas referenced :  mutual-corec-ext2 false_wf le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int unit_wf2 int_seg_wf lelt_wf list_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__equal_int int_subtype_base int_seg_properties subtype_rel_union subtype_rel_product subtype_rel_list int_seg_subtype int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf k-subtype_wf strong-continuous-union continuous-constant strong-continuous-product continuous-id strong-continuous-list subtype_rel_weakening nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis hypothesisEquality lambdaEquality setElimination rename because_Cache unionElimination equalityElimination productElimination independent_isectElimination unionEquality productEquality applyEquality functionExtensionality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination functionEquality universeEquality isect_memberFormation intEquality hypothesis_subsumption addEquality approximateComputation int_eqEquality isect_memberEquality voidEquality axiomEquality isectEquality

Latex:
test-mutual-corec()  \mequiv{}  \mlambda{}i.if  (i  =\msubz{}  0)
                                                  then  Unit  +  (test-mutual-corec()  0  \mtimes{}  ((test-mutual-corec()  1)  List))
                                                  else  Unit  +  (test-mutual-corec()  1  \mtimes{}  ((test-mutual-corec()  0)  List))
                                                  fi 



Date html generated: 2018_05_21-PM-00_31_44
Last ObjectModification: 2017_10_18-PM-06_50_26

Theory : int_2


Home Index