Nuprl Lemma : length_of_not_nil

[A:Type]. ∀[as:A List].  uiff(¬(as [] ∈ (A List));||as|| ≥ )


Proof




Definitions occuring in Statement :  length: ||as|| nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] ge: i ≥  not: ¬A natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False ge: i ≥  le: A ≤ B prop: less_than': less_than'(a;b) true: True cons: [a b] top: Top exists: x:A. B[x] subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] subtract: m nat_plus: + less_than: a < b squash: T decidable: Dec(P)
Lemmas referenced :  list-cases length_of_nil_lemma nil_wf less_than'_wf not_wf equal-wf-base list_wf ge_wf product_subtype_list length_of_cons_lemma length_wf equal-wf-T-base cons_wf cons_neq_nil non_neg_length length_wf_nat nat_wf set_subtype_base le_wf int_subtype_base equal_wf add-commutes add_functionality_wrt_le subtract_wf le_reflexive minus-one-mul zero-add one-mul add-mul-special add-associates two-mul mul-distributes-right zero-mul not-ge-2 false_wf add-swap omega-shadow less_than_wf nat_properties decidable__le
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule independent_pairFormation isect_memberFormation independent_functionElimination cumulativity voidElimination productElimination independent_pairEquality lambdaEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry baseClosed because_Cache lambdaFormation promote_hyp hypothesis_subsumption isect_memberEquality voidEquality addEquality universeEquality dependent_pairFormation sqequalIntensionalEquality applyEquality intEquality independent_isectElimination multiplyEquality minusEquality dependent_set_memberEquality imageMemberEquality setElimination rename

Latex:
\mforall{}[A:Type].  \mforall{}[as:A  List].    uiff(\mneg{}(as  =  []);||as||  \mgeq{}  1  )



Date html generated: 2017_04_14-AM-08_36_19
Last ObjectModification: 2017_02_27-PM-03_28_31

Theory : list_0


Home Index