Nuprl Lemma : length_of_not_nil
∀[A:Type]. ∀[as:A List].  uiff(¬(as = [] ∈ (A List));||as|| ≥ 1 )
Proof
Definitions occuring in Statement : 
length: ||as||
, 
nil: []
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
not: ¬A
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
prop: ℙ
, 
less_than': less_than'(a;b)
, 
true: True
, 
cons: [a / b]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtract: n - m
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
Lemmas referenced : 
list-cases, 
length_of_nil_lemma, 
nil_wf, 
less_than'_wf, 
not_wf, 
equal-wf-base, 
list_wf, 
ge_wf, 
product_subtype_list, 
length_of_cons_lemma, 
length_wf, 
equal-wf-T-base, 
cons_wf, 
cons_neq_nil, 
non_neg_length, 
length_wf_nat, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
equal_wf, 
add-commutes, 
add_functionality_wrt_le, 
subtract_wf, 
le_reflexive, 
minus-one-mul, 
zero-add, 
one-mul, 
add-mul-special, 
add-associates, 
two-mul, 
mul-distributes-right, 
zero-mul, 
not-ge-2, 
false_wf, 
add-swap, 
omega-shadow, 
less_than_wf, 
nat_properties, 
decidable__le
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
independent_pairFormation, 
isect_memberFormation, 
independent_functionElimination, 
cumulativity, 
voidElimination, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
because_Cache, 
lambdaFormation, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
addEquality, 
universeEquality, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
multiplyEquality, 
minusEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
setElimination, 
rename
Latex:
\mforall{}[A:Type].  \mforall{}[as:A  List].    uiff(\mneg{}(as  =  []);||as||  \mgeq{}  1  )
Date html generated:
2017_04_14-AM-08_36_19
Last ObjectModification:
2017_02_27-PM-03_28_31
Theory : list_0
Home
Index