Nuprl Lemma : iseg-mapfilter

[T:Type]
  ∀P:T ⟶ 𝔹. ∀[T':Type]. ∀f:{x:T| ↑(P x)}  ⟶ T'. ∀L1,L2:T List.  (L1 ≤ L2  mapfilter(f;P;L1) ≤ mapfilter(f;P;L2))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 mapfilter: mapfilter(f;P;L) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] mapfilter: mapfilter(f;P;L) top: Top or: P ∨ Q cons: [a b] uimplies: supposing a bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B squash: T
Lemmas referenced :  list_induction all_wf list_wf iseg_wf mapfilter_wf assert_wf filter_nil_lemma map_nil_lemma filter_cons_lemma bool_wf nil_iseg nil_wf cons_wf list-cases product_subtype_list iseg_length length_of_cons_lemma length_of_nil_lemma eqtt_to_assert mapfilter_nil_lemma map_cons_lemma non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot cons_iseg equal-wf-T-base bnot_wf not_wf assert_elim not_assert_elim and_wf btrue_neq_bfalse uiff_transitivity assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis functionEquality functionExtensionality applyEquality setEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename because_Cache universeEquality unionElimination promote_hyp hypothesis_subsumption productElimination independent_isectElimination equalityElimination equalityTransitivity equalitySymmetry natural_numberEquality dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll instantiate baseClosed dependent_set_memberEquality applyLambdaEquality setElimination imageMemberEquality imageElimination

Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}
        \mforall{}[T':Type]
            \mforall{}f:\{x:T|  \muparrow{}(P  x)\}    {}\mrightarrow{}  T'.  \mforall{}L1,L2:T  List.    (L1  \mleq{}  L2  {}\mRightarrow{}  mapfilter(f;P;L1)  \mleq{}  mapfilter(f;P;L2))



Date html generated: 2017_04_17-AM-08_50_07
Last ObjectModification: 2017_02_27-PM-05_07_04

Theory : list_1


Home Index