Nuprl Lemma : last-concat-non-null
∀[T:Type]. ∀[ll:T List List].
  ((¬↑null(concat(ll))) ∧ (last(concat(ll)) = last(last(ll)) ∈ T)) supposing ((¬↑null(last(ll))) and (¬↑null(ll)))
Proof
Definitions occuring in Statement : 
last: last(L)
, 
null: null(as)
, 
concat: concat(ll)
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
concat: concat(ll)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
not: ¬A
, 
false: False
, 
true: True
, 
or: P ∨ Q
, 
cons: [a / b]
, 
last: last(L)
, 
subtract: n - m
, 
select: L[n]
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
squash: ↓T
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
list_wf, 
isect_wf, 
not_wf, 
assert_wf, 
null_wf, 
last_wf, 
concat_wf, 
equal_wf, 
null_nil_lemma, 
reduce_nil_lemma, 
null_cons_lemma, 
true_wf, 
list-cases, 
product_subtype_list, 
reduce_cons_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
subtype_rel_list, 
top_wf, 
false_wf, 
append-nil, 
assert_functionality_wrt_uiff, 
cons_wf, 
assert_elim, 
bfalse_wf, 
btrue_neq_bfalse, 
squash_wf, 
last_cons, 
concat-cons, 
null_append, 
assert_of_null, 
append_wf, 
band_wf, 
equal-wf-T-base, 
length_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
last_append, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
productEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
rename, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
applyEquality, 
independent_pairFormation, 
addLevel, 
levelHypothesis, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
hyp_replacement, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[ll:T  List  List].
    ((\mneg{}\muparrow{}null(concat(ll)))  \mwedge{}  (last(concat(ll))  =  last(last(ll))))  supposing 
          ((\mneg{}\muparrow{}null(last(ll)))  and 
          (\mneg{}\muparrow{}null(ll)))
Date html generated:
2017_04_17-AM-08_51_40
Last ObjectModification:
2017_02_27-PM-05_10_00
Theory : list_1
Home
Index