Nuprl Lemma : length_filter

[A:Type]. ∀[P:A ⟶ 𝔹]. ∀[L:A List].  (||filter(P;L)|| count(P;L) ∈ ℕ)


Proof




Definitions occuring in Statement :  count: count(P;L) length: ||as|| filter: filter(P;l) list: List nat: bool: 𝔹 uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] prop: uimplies: supposing a all: x:A. B[x] implies:  Q count: count(P;L) top: Top decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  guard: {T} ge: i ≥  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  list_induction equal_wf nat_wf length_wf_nat filter_wf5 subtype_rel_dep_function bool_wf l_member_wf set_wf count_wf list_wf filter_nil_lemma reduce_nil_lemma length_of_nil_lemma decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf le_wf filter_cons_lemma reduce_cons_lemma eqtt_to_assert length_of_cons_lemma nat_properties length_wf subtype_rel_self intformand_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_term_value_add_lemma int_term_value_var_lemma add_nat_wf decidable__le intformle_wf int_formula_prop_le_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot zero-add reduce_wf ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis cumulativity because_Cache applyEquality setEquality independent_isectElimination setElimination rename lambdaFormation functionExtensionality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality unionElimination dependent_pairFormation intEquality computeAll dependent_set_memberEquality equalityTransitivity equalitySymmetry independent_pairFormation equalityElimination productElimination applyLambdaEquality addEquality int_eqEquality promote_hyp instantiate axiomEquality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].    (||filter(P;L)||  =  count(P;L))



Date html generated: 2017_04_14-AM-09_31_21
Last ObjectModification: 2017_02_27-PM-04_03_17

Theory : list_1


Home Index