Nuprl Lemma : length_filter
∀[A:Type]. ∀[P:A ⟶ 𝔹]. ∀[L:A List]. (||filter(P;L)|| = count(P;L) ∈ ℕ)
Proof
Definitions occuring in Statement :
count: count(P;L)
,
length: ||as||
,
filter: filter(P;l)
,
list: T List
,
nat: ℕ
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
prop: ℙ
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
count: count(P;L)
,
top: Top
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
not: ¬A
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
guard: {T}
,
ge: i ≥ j
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
list_induction,
equal_wf,
nat_wf,
length_wf_nat,
filter_wf5,
subtype_rel_dep_function,
bool_wf,
l_member_wf,
set_wf,
count_wf,
list_wf,
filter_nil_lemma,
reduce_nil_lemma,
length_of_nil_lemma,
decidable__equal_int,
satisfiable-full-omega-tt,
intformnot_wf,
intformeq_wf,
itermConstant_wf,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
false_wf,
le_wf,
filter_cons_lemma,
reduce_cons_lemma,
eqtt_to_assert,
length_of_cons_lemma,
nat_properties,
length_wf,
subtype_rel_self,
intformand_wf,
itermAdd_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
add_nat_wf,
decidable__le,
intformle_wf,
int_formula_prop_le_lemma,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
zero-add,
reduce_wf,
ifthenelse_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
hypothesis,
cumulativity,
because_Cache,
applyEquality,
setEquality,
independent_isectElimination,
setElimination,
rename,
lambdaFormation,
functionExtensionality,
independent_functionElimination,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
natural_numberEquality,
unionElimination,
dependent_pairFormation,
intEquality,
computeAll,
dependent_set_memberEquality,
equalityTransitivity,
equalitySymmetry,
independent_pairFormation,
equalityElimination,
productElimination,
applyLambdaEquality,
addEquality,
int_eqEquality,
promote_hyp,
instantiate,
axiomEquality,
functionEquality,
universeEquality
Latex:
\mforall{}[A:Type]. \mforall{}[P:A {}\mrightarrow{} \mBbbB{}]. \mforall{}[L:A List]. (||filter(P;L)|| = count(P;L))
Date html generated:
2017_04_14-AM-09_31_21
Last ObjectModification:
2017_02_27-PM-04_03_17
Theory : list_1
Home
Index