Nuprl Lemma : length_filter
∀[A:Type]. ∀[P:A ⟶ 𝔹]. ∀[L:A List].  (||filter(P;L)|| = count(P;L) ∈ ℕ)
Proof
Definitions occuring in Statement : 
count: count(P;L), 
length: ||as||, 
filter: filter(P;l), 
list: T List, 
nat: ℕ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
prop: ℙ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
count: count(P;L), 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
guard: {T}, 
ge: i ≥ j , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
list_induction, 
equal_wf, 
nat_wf, 
length_wf_nat, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
set_wf, 
count_wf, 
list_wf, 
filter_nil_lemma, 
reduce_nil_lemma, 
length_of_nil_lemma, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
false_wf, 
le_wf, 
filter_cons_lemma, 
reduce_cons_lemma, 
eqtt_to_assert, 
length_of_cons_lemma, 
nat_properties, 
length_wf, 
subtype_rel_self, 
intformand_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
add_nat_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
zero-add, 
reduce_wf, 
ifthenelse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
cumulativity, 
because_Cache, 
applyEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaFormation, 
functionExtensionality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
intEquality, 
computeAll, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
equalityElimination, 
productElimination, 
applyLambdaEquality, 
addEquality, 
int_eqEquality, 
promote_hyp, 
instantiate, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].    (||filter(P;L)||  =  count(P;L))
Date html generated:
2017_04_14-AM-09_31_21
Last ObjectModification:
2017_02_27-PM-04_03_17
Theory : list_1
Home
Index