Nuprl Lemma : max-map-exists
∀[T:Type]. ∀L:T List. ∀f:{x:T| (x ∈ L)}  ⟶ ℤ.  (∃x∈L. (∀y∈L.(f y) ≤ (f x))) supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x])
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
and: P ∧ Q
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
l_all: (∀x∈L.P[x])
, 
le: A ≤ B
, 
int_seg: {i..j-}
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
subtract: n - m
, 
ge: i ≥ j 
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
select: L[n]
, 
cons: [a / b]
Lemmas referenced : 
list_induction, 
isect_wf, 
less_than_wf, 
length_wf, 
l_exists_wf, 
l_all_wf, 
le_wf, 
l_member_wf, 
list_wf, 
length_of_nil_lemma, 
member-less_than, 
length_of_cons_lemma, 
decidable__lt, 
decidable__le, 
add-member-int_seg2, 
cons_wf, 
subtract_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
non_neg_length, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
lelt_wf, 
select-cons-tl, 
int_seg_properties, 
add-subtract-cancel, 
l_all_cons, 
select_wf, 
false_wf, 
int_seg_wf, 
list-cases, 
l_all_single, 
equal_wf, 
nil_wf, 
product_subtype_list, 
list-subtype
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
cumulativity, 
hypothesis, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
imageElimination, 
productElimination, 
voidElimination, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidEquality, 
addEquality, 
unionElimination, 
functionEquality, 
intEquality, 
universeEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
int_eqEquality, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}.    (\mexists{}x\mmember{}L.  (\mforall{}y\mmember{}L.(f  y)  \mleq{}  (f  x)))  supposing  0  <  ||L||
Date html generated:
2017_04_17-AM-07_50_52
Last ObjectModification:
2017_02_27-PM-04_24_22
Theory : list_1
Home
Index