Nuprl Lemma : max-map-exists

[T:Type]. ∀L:T List. ∀f:{x:T| (x ∈ L)}  ⟶ ℤ.  (∃x∈L. (∀y∈L.(f y) ≤ (f x))) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s] implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q top: Top decidable: Dec(P) or: P ∨ Q l_exists: (∃x∈L. P[x]) exists: x:A. B[x] l_all: (∀x∈L.P[x]) le: A ≤ B int_seg: {i..j-} uiff: uiff(P;Q) lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A subtract: m ge: i ≥  guard: {T} iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B select: L[n] cons: [a b]
Lemmas referenced :  list_induction isect_wf less_than_wf length_wf l_exists_wf l_all_wf le_wf l_member_wf list_wf length_of_nil_lemma member-less_than length_of_cons_lemma decidable__lt decidable__le add-member-int_seg2 cons_wf subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermSubtract_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf non_neg_length intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma lelt_wf select-cons-tl int_seg_properties add-subtract-cancel l_all_cons select_wf false_wf int_seg_wf list-cases l_all_single equal_wf nil_wf product_subtype_list list-subtype
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality natural_numberEquality cumulativity hypothesis applyEquality functionExtensionality setElimination rename setEquality independent_functionElimination imageElimination productElimination voidElimination because_Cache independent_isectElimination dependent_functionElimination isect_memberEquality voidEquality addEquality unionElimination functionEquality intEquality universeEquality dependent_pairFormation dependent_set_memberEquality independent_pairFormation int_eqEquality computeAll promote_hyp hypothesis_subsumption equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}.    (\mexists{}x\mmember{}L.  (\mforall{}y\mmember{}L.(f  y)  \mleq{}  (f  x)))  supposing  0  <  ||L||



Date html generated: 2017_04_17-AM-07_50_52
Last ObjectModification: 2017_02_27-PM-04_24_22

Theory : list_1


Home Index