Nuprl Lemma : prime-sum-of-two-squares-if-one-mod-four

This proof that every prime that is mod is the sum of two squares
comes from the article by D. Zagier called
"A One-Sentence Proof that Every Prime == (mod 4) Is Sum of Two Squares".

It uses the properties 
twosquareinv-involution and
twosquareinv-fixpoint 
that certain involution has unique fixed point to deduce
that the given finite set (see twosquare-type-finite)
has odd cardinality
 (see involution-with-unique-fixpoint,
so every invoulution has fixed point (see involution-has-fixpoint),
and this proves the theorem.


p:{p:{2...}| prime(p)} ((∃k:ℤ(p (1 (4 k)) ∈ ℤ))  (∃a,b:ℤ(p ((a a) (b b)) ∈ ℤ)))


Proof




Definitions occuring in Statement :  prime: prime(a) int_upper: {i...} all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T finite: finite(T) uall: [x:A]. B[x] nat: int_upper: {i...} prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A sq_stable: SqStable(P) squash: T guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top twosquareinv: twosquareinv(t) spreadn: spread3 subtract: m lt_int: i <j ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b pi1: fst(t) pi2: snd(t)
Lemmas referenced :  twosquare-type-finite involution-with-unique-fixpoint nat_wf equal_wf twosquareinv_wf twosquareinv-involution twosquareinv-fixpoint subtype_rel_product exists_wf equal-wf-T-base int_subtype_base set_wf int_upper_wf prime_wf false_wf le_wf nat_properties sq_stable_from_decidable decidable__prime upper_subtype_nat int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_wf decidable__equal_int lt_int_wf subtract_wf bool_wf eqtt_to_assert assert_of_lt_int intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot not_functionality_wrt_uiff assert_wf less_than_wf zero-add involution-has-fixpoint pi2_wf Error :pi1_wf_top,  set_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality isectElimination productEquality hypothesis setEquality intEquality addEquality multiplyEquality setElimination rename because_Cache natural_numberEquality independent_functionElimination sqequalRule lambdaEquality applyEquality independent_isectElimination baseApply closedConclusion baseClosed dependent_pairFormation dependent_pairEquality dependent_set_memberEquality independent_pairFormation imageMemberEquality imageElimination unionElimination approximateComputation int_eqEquality isect_memberEquality voidElimination voidEquality equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity applyLambdaEquality independent_pairEquality

Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  ((\mexists{}k:\mBbbZ{}.  (p  =  (1  +  (4  *  k))))  {}\mRightarrow{}  (\mexists{}a,b:\mBbbZ{}.  (p  =  ((a  *  a)  +  (b  *  b)))))



Date html generated: 2019_06_20-PM-02_41_31
Last ObjectModification: 2018_09_24-PM-02_52_59

Theory : num_thy_1


Home Index