Nuprl Lemma : prime-sum-of-two-squares-if-one-mod-four
This proof that every prime p that is 1 mod 4 is the sum of two squares
comes from the article by D. Zagier called
"A One-Sentence Proof that Every Prime p == 1 (mod 4) Is a Sum of Two Squares".
It uses the properties 
twosquareinv-involution and
twosquareinv-fixpoint 
that a certain involution has a unique fixed point to deduce
that the given finite set (see twosquare-type-finite)
has odd cardinality
 (see involution-with-unique-fixpoint) ,
so every invoulution has a fixed point (see involution-has-fixpoint),
and this proves the theorem.
⋅
∀p:{p:{2...}| prime(p)} . ((∃k:ℤ. (p = (1 + (4 * k)) ∈ ℤ)) 
⇒ (∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)))
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
finite: finite(T)
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
int_upper: {i...}
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
twosquareinv: twosquareinv(t)
, 
spreadn: spread3, 
subtract: n - m
, 
lt_int: i <z j
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
twosquare-type-finite, 
involution-with-unique-fixpoint, 
nat_wf, 
equal_wf, 
twosquareinv_wf, 
twosquareinv-involution, 
twosquareinv-fixpoint, 
subtype_rel_product, 
exists_wf, 
equal-wf-T-base, 
int_subtype_base, 
set_wf, 
int_upper_wf, 
prime_wf, 
false_wf, 
le_wf, 
nat_properties, 
sq_stable_from_decidable, 
decidable__prime, 
upper_subtype_nat, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
itermMultiply_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
decidable__equal_int, 
lt_int_wf, 
subtract_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
not_functionality_wrt_uiff, 
assert_wf, 
less_than_wf, 
zero-add, 
involution-has-fixpoint, 
pi2_wf, 
Error :pi1_wf_top, 
set_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
productEquality, 
hypothesis, 
setEquality, 
intEquality, 
addEquality, 
multiplyEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
dependent_pairFormation, 
dependent_pairEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
imageElimination, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
applyLambdaEquality, 
independent_pairEquality
Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  ((\mexists{}k:\mBbbZ{}.  (p  =  (1  +  (4  *  k))))  {}\mRightarrow{}  (\mexists{}a,b:\mBbbZ{}.  (p  =  ((a  *  a)  +  (b  *  b)))))
Date html generated:
2019_06_20-PM-02_41_31
Last ObjectModification:
2018_09_24-PM-02_52_59
Theory : num_thy_1
Home
Index