Nuprl Lemma : twosquareinv-fixpoint

p:{p:{2...}| prime(p)} . ∀t:x:ℕ × y:ℕ × {z:ℕ((x x) (4 z)) p ∈ ℤ.
  ((twosquareinv(t) t ∈ (ℕ × ℕ × ℕ))  (t ~ <1, 1, (p 1) ÷ 4>))


Proof




Definitions occuring in Statement :  twosquareinv: twosquareinv(t) prime: prime(a) int_upper: {i...} nat: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  pair: <a, b> product: x:A × B[x] divide: n ÷ m multiply: m subtract: m add: m natural_number: $n int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb bfalse: ff pi1: fst(t) pi2: snd(t) ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 spreadn: spread3 twosquareinv: twosquareinv(t) and: P ∧ Q exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} sq_type: SQType(T) false: False not: ¬A prop: int_upper: {i...} uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x] less_than: a < b top: Top less_than': less_than'(a;b) le: A ≤ B nat_plus: + squash: T sq_stable: SqStable(P)
Lemmas referenced :  istype-le decidable__le equal_wf int_formula_prop_le_lemma intformle_wf int_term_value_subtract_lemma itermSubtract_wf istype-less_than less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf bool_cases_sqequal eqff_to_assert pi1_wf pi2_wf assert_of_lt_int eqtt_to_assert subtract_wf lt_int_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int int_upper_properties nat_properties not-prime-square istype-nat product_subtype_base istype-int_upper prime_wf int_upper_wf int_subtype_base istype-int le_wf set_subtype_base equal-wf-base nat_wf subtype_base_sq not-prime-mult add-subtract-cancel istype-void assoced_nelim prime-mul int_formula_prop_less_lemma intformless_wf decidable__lt div_mul_cancel mul-commutes istype-false upper_subtype_nat decidable__prime sq_stable_from_decidable
Rules used in proof :  dependent_set_memberEquality_alt setIsType productIsType addEquality promote_hyp applyLambdaEquality equalityElimination voidElimination universeIsType independent_pairFormation Error :memTop,  int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination multiplyEquality dependent_functionElimination independent_functionElimination sqequalBase equalitySymmetry equalityTransitivity equalityIstype productElimination inhabitedIsType because_Cache rename setElimination independent_isectElimination natural_numberEquality lambdaEquality_alt applyEquality hypothesisEquality baseClosed closedConclusion baseApply sqequalRule intEquality setEquality hypothesis productEquality cumulativity isectElimination sqequalHypSubstitution extract_by_obid introduction instantiate thin cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution isect_memberEquality_alt dependent_pairEquality_alt imageElimination imageMemberEquality

Latex:
\mforall{}p:\{p:\{2...\}|  prime(p)\}  .  \mforall{}t:x:\mBbbN{}  \mtimes{}  y:\mBbbN{}  \mtimes{}  \{z:\mBbbN{}|  ((x  *  x)  +  (4  *  y  *  z))  =  p\}  .
    ((twosquareinv(t)  =  t)  {}\mRightarrow{}  (t  \msim{}  ə,  1,  (p  -  1)  \mdiv{}  4>))



Date html generated: 2020_05_19-PM-10_04_01
Last ObjectModification: 2019_12_26-AM-11_45_09

Theory : num_thy_1


Home Index