Nuprl Lemma : mul-mono-poly-equiv

[m:iMonomial()]. ∀[p:iMonomial() List].
  ipolynomial-term(mul-mono-poly(m;p)) ≡ imonomial-term(m) (*) ipolynomial-term(p)


Proof




Definitions occuring in Statement :  mul-mono-poly: mul-mono-poly(m;p) ipolynomial-term: ipolynomial-term(p) imonomial-term: imonomial-term(m) iMonomial: iMonomial() equiv_int_terms: t1 ≡ t2 itermMultiply: left (*) right list: List uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] iMonomial: iMonomial() int_nzero: -o so_apply: x[s] implies:  Q mul-mono-poly: mul-mono-poly(m;p) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] uimplies: supposing a prop: callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) equiv_int_terms: t1 ≡ t2 ipolynomial-term: ipolynomial-term(p) ifthenelse: if then else fi  btrue: tt int_term_value: int_term_value(f;t) itermConstant: "const" int_term_ind: int_term_ind itermMultiply: left (*) right subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) itermAdd: left (+) right
Lemmas referenced :  list_induction iMonomial_wf equiv_int_terms_wf ipolynomial-term_wf mul-mono-poly_wf1 itermMultiply_wf imonomial-term_wf list_wf list_ind_nil_lemma list_ind_cons_lemma valueall-type-has-valueall product-valueall-type int_nzero_wf sorted_wf subtype_rel_self set-valueall-type nequal_wf int-valueall-type list-valueall-type mul-monomials_wf evalall-reduce null_nil_lemma mul-commutes int_term_value_wf subtype_rel_product zero-mul cons_wf itermAdd_wf equiv_int_terms_functionality equiv_int_terms_transitivity ipolynomial-term-cons itermAdd_functionality mul-monomials-equiv itermMultiply_functionality equiv_int_terms_weakening int_term_wf equal_wf mul-distributes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesis sqequalRule lambdaEquality hypothesisEquality productElimination independent_pairEquality setElimination rename independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation independent_isectElimination setEquality intEquality because_Cache natural_numberEquality callbyvalueReduce equalityTransitivity equalitySymmetry axiomEquality functionEquality applyEquality addEquality multiplyEquality

Latex:
\mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    ipolynomial-term(mul-mono-poly(m;p))  \mequiv{}  imonomial-term(m)  (*)  ipolynomial-term(p)



Date html generated: 2017_09_29-PM-05_53_33
Last ObjectModification: 2017_07_26-PM-01_42_49

Theory : omega


Home Index