Nuprl Lemma : mul-monomials-equiv

[m1,m2:iMonomial()].  imonomial-term(mul-monomials(m1;m2)) ≡ imonomial-term(m1) (*) imonomial-term(m2)


Proof




Definitions occuring in Statement :  mul-monomials: mul-monomials(m1;m2) imonomial-term: imonomial-term(m) iMonomial: iMonomial() equiv_int_terms: t1 ≡ t2 itermMultiply: left (*) right uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iMonomial: iMonomial() mul-monomials: mul-monomials(m1;m2) has-value: (a)↓ uimplies: supposing a int_nzero: -o equiv_int_terms: t1 ≡ t2 all: x:A. B[x] int_term_value: int_term_value(f;t) itermMultiply: left (*) right int_term_ind: int_term_ind true: True squash: T prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] merge-int: merge-int(as;bs) top: Top imonomial-term: imonomial-term(m) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] itermConstant: "const" insert-int: insert-int(x;l) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  value-type-has-value int-value-type list_wf list-value-type merge-int-accum_wf merge-int-accum-sq iMonomial_wf merge-int_wf subtype_rel_self equal_wf squash_wf true_wf imonomial-term-linear iff_weakening_equal list_induction all_wf int_term_value_wf imonomial-term_wf reduce_nil_lemma list_accum_nil_lemma mul-commutes one-mul reduce_cons_lemma insert-int_wf imonomial-cons list_ind_nil_lemma nil_wf mul-associates mul-swap insert-int-cons lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf cons_wf int_subtype_base int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule callbyvalueReduce extract_by_obid isectElimination intEquality independent_isectElimination hypothesis multiplyEquality setElimination rename hypothesisEquality lambdaEquality dependent_functionElimination axiomEquality functionEquality isect_memberEquality because_Cache lambdaFormation natural_numberEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_functionElimination functionExtensionality independent_pairEquality voidElimination voidEquality unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate cumulativity equalityUniverse levelHypothesis

Latex:
\mforall{}[m1,m2:iMonomial()].
    imonomial-term(mul-monomials(m1;m2))  \mequiv{}  imonomial-term(m1)  (*)  imonomial-term(m2)



Date html generated: 2017_09_29-PM-05_53_19
Last ObjectModification: 2017_07_26-PM-01_42_46

Theory : omega


Home Index