Nuprl Lemma : mul-monomials-equiv
∀[m1,m2:iMonomial()].  imonomial-term(mul-monomials(m1;m2)) ≡ imonomial-term(m1) (*) imonomial-term(m2)
Proof
Definitions occuring in Statement : 
mul-monomials: mul-monomials(m1;m2), 
imonomial-term: imonomial-term(m), 
iMonomial: iMonomial(), 
equiv_int_terms: t1 ≡ t2, 
itermMultiply: left (*) right, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
iMonomial: iMonomial(), 
mul-monomials: mul-monomials(m1;m2), 
has-value: (a)↓, 
uimplies: b supposing a, 
int_nzero: ℤ-o, 
equiv_int_terms: t1 ≡ t2, 
all: ∀x:A. B[x], 
int_term_value: int_term_value(f;t), 
itermMultiply: left (*) right, 
int_term_ind: int_term_ind, 
true: True, 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
merge-int: merge-int(as;bs), 
top: Top, 
imonomial-term: imonomial-term(m), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
itermConstant: "const", 
insert-int: insert-int(x;l), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
list_wf, 
list-value-type, 
merge-int-accum_wf, 
merge-int-accum-sq, 
iMonomial_wf, 
merge-int_wf, 
subtype_rel_self, 
equal_wf, 
squash_wf, 
true_wf, 
imonomial-term-linear, 
iff_weakening_equal, 
list_induction, 
all_wf, 
int_term_value_wf, 
imonomial-term_wf, 
reduce_nil_lemma, 
list_accum_nil_lemma, 
mul-commutes, 
one-mul, 
reduce_cons_lemma, 
insert-int_wf, 
imonomial-cons, 
list_ind_nil_lemma, 
nil_wf, 
mul-associates, 
mul-swap, 
insert-int-cons, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
cons_wf, 
int_subtype_base, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
lambdaFormation, 
natural_numberEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
functionExtensionality, 
independent_pairEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[m1,m2:iMonomial()].
    imonomial-term(mul-monomials(m1;m2))  \mequiv{}  imonomial-term(m1)  (*)  imonomial-term(m2)
Date html generated:
2017_09_29-PM-05_53_19
Last ObjectModification:
2017_07_26-PM-01_42_46
Theory : omega
Home
Index