Nuprl Lemma : mul-monomials-equiv
∀[m1,m2:iMonomial()].  imonomial-term(mul-monomials(m1;m2)) ≡ imonomial-term(m1) (*) imonomial-term(m2)
Proof
Definitions occuring in Statement : 
mul-monomials: mul-monomials(m1;m2)
, 
imonomial-term: imonomial-term(m)
, 
iMonomial: iMonomial()
, 
equiv_int_terms: t1 ≡ t2
, 
itermMultiply: left (*) right
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iMonomial: iMonomial()
, 
mul-monomials: mul-monomials(m1;m2)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
int_nzero: ℤ-o
, 
equiv_int_terms: t1 ≡ t2
, 
all: ∀x:A. B[x]
, 
int_term_value: int_term_value(f;t)
, 
itermMultiply: left (*) right
, 
int_term_ind: int_term_ind, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
merge-int: merge-int(as;bs)
, 
top: Top
, 
imonomial-term: imonomial-term(m)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
itermConstant: "const"
, 
insert-int: insert-int(x;l)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
list_wf, 
list-value-type, 
merge-int-accum_wf, 
merge-int-accum-sq, 
iMonomial_wf, 
merge-int_wf, 
subtype_rel_self, 
equal_wf, 
squash_wf, 
true_wf, 
imonomial-term-linear, 
iff_weakening_equal, 
list_induction, 
all_wf, 
int_term_value_wf, 
imonomial-term_wf, 
reduce_nil_lemma, 
list_accum_nil_lemma, 
mul-commutes, 
one-mul, 
reduce_cons_lemma, 
insert-int_wf, 
imonomial-cons, 
list_ind_nil_lemma, 
nil_wf, 
mul-associates, 
mul-swap, 
insert-int-cons, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
cons_wf, 
int_subtype_base, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
lambdaFormation, 
natural_numberEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
functionExtensionality, 
independent_pairEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[m1,m2:iMonomial()].
    imonomial-term(mul-monomials(m1;m2))  \mequiv{}  imonomial-term(m1)  (*)  imonomial-term(m2)
Date html generated:
2017_09_29-PM-05_53_19
Last ObjectModification:
2017_07_26-PM-01_42_46
Theory : omega
Home
Index