Nuprl Lemma : bag-union-bagp

[T:Type]. ∀[bbs:bag(bag(T))].  (0 < #([b∈bbs|0 <#(b)])  (bag-union(bbs) ∈ Bag+))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) bagp: Bag+ bag-size: #(bs) bag-filter: [x∈b|p[x]] bag: bag(T) lt_int: i <j less_than: a < b uall: [x:A]. B[x] implies:  Q member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q bagp: Bag+ squash: T exists: x:A. B[x] prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a empty-bag: {} all: x:A. B[x] top: Top cons-bag: x.b bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  decidable: Dec(P) or: P ∨ Q nat: guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nat_plus: + less_than: a < b
Lemmas referenced :  bag-union_wf bag_to_squash_list less_than_wf bag-size_wf bag_wf assert_wf lt_int_wf bag-filter_wf list_induction list-subtype-bag list_wf bag_filter_empty_lemma bag_union_empty_lemma bag_size_empty_lemma bag_filter_cons_lemma bag_union_cons_lemma bag-size-append bool_wf eqtt_to_assert assert_of_lt_int bag_size_cons_lemma decidable__lt subtype_rel_self nat_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf intformless_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot add_nat_plus nat_plus_wf nat_plus_properties add-is-int-iff intformeq_wf int_formula_prop_eq_lemma false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache imageElimination productElimination promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality natural_numberEquality setEquality applyEquality sqequalRule lambdaEquality rename functionEquality independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality unionElimination equalityElimination equalityTransitivity addEquality setElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll instantiate pointwiseFunctionality baseApply closedConclusion baseClosed axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bbs:bag(bag(T))].    (0  <  \#([b\mmember{}bbs|0  <z  \#(b)])  {}\mRightarrow{}  (bag-union(bbs)  \mmember{}  T  Bag\msupplus{}))



Date html generated: 2017_10_01-AM-08_46_29
Last ObjectModification: 2017_07_26-PM-04_31_18

Theory : bags


Home Index