Nuprl Lemma : bag-union-bagp
∀[T:Type]. ∀[bbs:bag(bag(T))].  (0 < #([b∈bbs|0 <z #(b)]) 
⇒ (bag-union(bbs) ∈ T Bag+))
Proof
Definitions occuring in Statement : 
bag-union: bag-union(bbs)
, 
bagp: T Bag+
, 
bag-size: #(bs)
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
lt_int: i <z j
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
bagp: T Bag+
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
empty-bag: {}
, 
all: ∀x:A. B[x]
, 
top: Top
, 
cons-bag: x.b
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nat_plus: ℕ+
, 
less_than: a < b
Lemmas referenced : 
bag-union_wf, 
bag_to_squash_list, 
less_than_wf, 
bag-size_wf, 
bag_wf, 
assert_wf, 
lt_int_wf, 
bag-filter_wf, 
list_induction, 
list-subtype-bag, 
list_wf, 
bag_filter_empty_lemma, 
bag_union_empty_lemma, 
bag_size_empty_lemma, 
bag_filter_cons_lemma, 
bag_union_cons_lemma, 
bag-size-append, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
bag_size_cons_lemma, 
decidable__lt, 
subtype_rel_self, 
nat_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
add_nat_plus, 
nat_plus_wf, 
nat_plus_properties, 
add-is-int-iff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
dependent_set_memberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
imageElimination, 
productElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
natural_numberEquality, 
setEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
rename, 
functionEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
addEquality, 
setElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
instantiate, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[bbs:bag(bag(T))].    (0  <  \#([b\mmember{}bbs|0  <z  \#(b)])  {}\mRightarrow{}  (bag-union(bbs)  \mmember{}  T  Bag\msupplus{}))
Date html generated:
2017_10_01-AM-08_46_29
Last ObjectModification:
2017_07_26-PM-04_31_18
Theory : bags
Home
Index