Nuprl Lemma : smallbag-subtype-list

T:Type. ({b:bag(T)| #(b) < 2}  ⊆{b:T List| ||b|| < 2} )


Proof




Definitions occuring in Statement :  bag-size: #(bs) bag: bag(T) length: ||as|| list: List less_than: a < b subtype_rel: A ⊆B all: x:A. B[x] set: {x:A| B[x]}  natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T bag-size: #(bs) uall: [x:A]. B[x] prop: bag: bag(T) uimplies: supposing a quotient: x,y:A//B[x; y] and: P ∧ Q squash: T true: True implies:  Q or: P ∨ Q cons: [a b] top: Top ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A permutation: permutation(T;L1;L2) permute_list: (L f) int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] lelt: i ≤ j < k decidable: Dec(P) guard: {T} less_than: a < b sq_type: SQType(T) select: L[n]
Lemmas referenced :  less_than_wf length_wf bag_wf bag-size_wf list_wf permutation_wf permutation_weakening equal-wf-base member_wf squash_wf true_wf equal_wf permutation-length list-cases nil_wf product_subtype_list length_of_nil_lemma length_of_cons_lemma non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf intformless_wf int_formula_prop_less_lemma length_wf_nat nat_wf cons_wf mklist-single subtype_base_sq int_seg_wf set_subtype_base lelt_wf int_subtype_base decidable__le int_seg_properties intformnot_wf int_formula_prop_not_lemma decidable__lt decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation lambdaEquality setElimination thin rename cut sqequalHypSubstitution dependent_set_memberEquality hypothesis introduction extract_by_obid isectElimination cumulativity hypothesisEquality natural_numberEquality setEquality applyEquality because_Cache sqequalRule universeEquality promote_hyp equalityTransitivity equalitySymmetry dependent_functionElimination independent_isectElimination pointwiseFunctionality pertypeElimination productElimination productEquality imageElimination imageMemberEquality baseClosed independent_functionElimination unionElimination hypothesis_subsumption isect_memberEquality voidElimination voidEquality dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll hyp_replacement applyLambdaEquality instantiate

Latex:
\mforall{}T:Type.  (\{b:bag(T)|  \#(b)  <  2\}    \msubseteq{}r  \{b:T  List|  ||b||  <  2\}  )



Date html generated: 2017_10_01-AM-08_45_52
Last ObjectModification: 2017_07_26-PM-04_30_57

Theory : bags


Home Index