Nuprl Lemma : accum_split_prefix
∀[A,T:Type]. ∀[x:A]. ∀[g:(T List × A) ⟶ A]. ∀[f:(T List × A) ⟶ 𝔹]. ∀[L:T List].
  ↑(f (snd(accum_split(g;x;f;concat(map(λp.(fst(p));fst(accum_split(g;x;f;L)))))))) 
  supposing ¬↑null(fst(accum_split(g;x;f;L)))
Proof
Definitions occuring in Statement : 
accum_split: accum_split(g;x;f;L), 
null: null(as), 
concat: concat(ll), 
map: map(f;as), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
not: ¬A, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
top: Top, 
so_apply: x[s], 
all: ∀x:A. B[x], 
pi1: fst(t), 
guard: {T}, 
accum_split: accum_split(g;x;f;L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
concat: concat(ll), 
pi2: snd(t), 
not: ¬A, 
true: True, 
false: False, 
spreadn: spread3, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x), 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
squash: ↓T
Lemmas referenced : 
last_induction, 
not_wf, 
assert_wf, 
null_wf3, 
list_wf, 
accum_split_wf, 
concat_wf, 
map_wf, 
pi1_wf_top, 
set_wf, 
is_accum_splitting_wf, 
equal_wf, 
pi2_wf, 
assert_witness, 
subtype_rel_product, 
top_wf, 
subtype_rel_list, 
bool_wf, 
list_accum_nil_lemma, 
null_nil_lemma, 
map_nil_lemma, 
reduce_nil_lemma, 
true_wf, 
list_accum_cons_lemma, 
uiff_transitivity, 
equal-wf-T-base, 
eqtt_to_assert, 
assert_of_null, 
iff_transitivity, 
bnot_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
list_accum_append, 
accum_split_inverse, 
map_append_sq, 
map_cons_lemma, 
concat_append, 
concat-single, 
squash_wf, 
append_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
because_Cache, 
applyEquality, 
hypothesis, 
functionExtensionality, 
productEquality, 
cumulativity, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
spreadEquality, 
lambdaFormation, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination, 
universeEquality, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
baseClosed, 
independent_pairFormation, 
impliesFunctionality, 
hyp_replacement, 
applyLambdaEquality, 
setEquality, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[A,T:Type].  \mforall{}[x:A].  \mforall{}[g:(T  List  \mtimes{}  A)  {}\mrightarrow{}  A].  \mforall{}[f:(T  List  \mtimes{}  A)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].
    \muparrow{}(f  (snd(accum\_split(g;x;f;concat(map(\mlambda{}p.(fst(p));fst(accum\_split(g;x;f;L)))))))) 
    supposing  \mneg{}\muparrow{}null(fst(accum\_split(g;x;f;L)))
Date html generated:
2018_05_21-PM-08_07_23
Last ObjectModification:
2017_07_26-PM-05_43_18
Theory : general
Home
Index