Nuprl Lemma : decidable-last-rel

[T:Type]. ∀[P:(T List) ⟶ T ⟶ ℙ].
  ((∀L:T List. ∀x:T.  Dec(P[L;x]))  (∀L:T List. Dec(∃L':T List. ∃x:T. ((L (L' [x]) ∈ (T List)) ∧ P[L';x]))))


Proof




Definitions occuring in Statement :  append: as bs cons: [a b] nil: [] list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a top: Top decidable: Dec(P) or: P ∨ Q prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] guard: {T} not: ¬A false: False exists: x:A. B[x] and: P ∧ Q assert: b ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) cons: [a b] bfalse: ff cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) sq_type: SQType(T) squash: T true: True iff: ⇐⇒ Q
Lemmas referenced :  decidable__assert null_wf3 subtype_rel_list top_wf list_wf all_wf decidable_wf list-cases null_nil_lemma btrue_wf null_cons_lemma bfalse_wf append_is_nil cons_wf nil_wf and_wf equal_wf btrue_neq_bfalse product_subtype_list exists_wf append_wf length_wf length-append last_lemma last_wf not_wf last_singleton_append assert_elim not_assert_elim assert_wf firstn_append non_neg_length decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma lelt_wf firstn_length firstn_wf subtype_base_sq int_subtype_base squash_wf true_wf length_append iff_weakening_equal length_of_cons_lemma length_of_nil_lemma decidable__equal_int add-is-int-iff intformeq_wf int_formula_prop_eq_lemma false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality hypothesis independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache sqequalRule unionElimination cumulativity functionExtensionality functionEquality universeEquality inrFormation productElimination equalitySymmetry dependent_set_memberEquality independent_pairFormation equalityTransitivity applyLambdaEquality setElimination rename independent_functionElimination promote_hyp hypothesis_subsumption productEquality inlFormation dependent_pairFormation addLevel hyp_replacement levelHypothesis natural_numberEquality int_eqEquality intEquality computeAll addEquality instantiate imageElimination imageMemberEquality baseClosed pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}L:T  List.  \mforall{}x:T.    Dec(P[L;x]))
    {}\mRightarrow{}  (\mforall{}L:T  List.  Dec(\mexists{}L':T  List.  \mexists{}x:T.  ((L  =  (L'  @  [x]))  \mwedge{}  P[L';x]))))



Date html generated: 2018_05_21-PM-07_21_22
Last ObjectModification: 2017_07_26-PM-05_05_16

Theory : general


Home Index