Nuprl Lemma : decidable-last-rel
∀[T:Type]. ∀[P:(T List) ⟶ T ⟶ ℙ].
  ((∀L:T List. ∀x:T.  Dec(P[L;x])) ⇒ (∀L:T List. Dec(∃L':T List. ∃x:T. ((L = (L' @ [x]) ∈ (T List)) ∧ P[L';x]))))
Proof
Definitions occuring in Statement : 
append: as @ bs, 
cons: [a / b], 
nil: [], 
list: T List, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
decidable: Dec(P), 
or: P ∨ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2], 
so_apply: x[s], 
guard: {T}, 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uiff: uiff(P;Q), 
cons: [a / b], 
bfalse: ff, 
cand: A c∧ B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
ge: i ≥ j , 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
sq_type: SQType(T), 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q
Lemmas referenced : 
decidable__assert, 
null_wf3, 
subtype_rel_list, 
top_wf, 
list_wf, 
all_wf, 
decidable_wf, 
list-cases, 
null_nil_lemma, 
btrue_wf, 
null_cons_lemma, 
bfalse_wf, 
append_is_nil, 
cons_wf, 
nil_wf, 
and_wf, 
equal_wf, 
btrue_neq_bfalse, 
product_subtype_list, 
exists_wf, 
append_wf, 
length_wf, 
length-append, 
last_lemma, 
last_wf, 
not_wf, 
last_singleton_append, 
assert_elim, 
not_assert_elim, 
assert_wf, 
firstn_append, 
non_neg_length, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
lelt_wf, 
firstn_length, 
firstn_wf, 
subtype_base_sq, 
int_subtype_base, 
squash_wf, 
true_wf, 
length_append, 
iff_weakening_equal, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__equal_int, 
add-is-int-iff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
sqequalRule, 
unionElimination, 
cumulativity, 
functionExtensionality, 
functionEquality, 
universeEquality, 
inrFormation, 
productElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
applyLambdaEquality, 
setElimination, 
rename, 
independent_functionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productEquality, 
inlFormation, 
dependent_pairFormation, 
addLevel, 
hyp_replacement, 
levelHypothesis, 
natural_numberEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
addEquality, 
instantiate, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}L:T  List.  \mforall{}x:T.    Dec(P[L;x]))
    {}\mRightarrow{}  (\mforall{}L:T  List.  Dec(\mexists{}L':T  List.  \mexists{}x:T.  ((L  =  (L'  @  [x]))  \mwedge{}  P[L';x]))))
Date html generated:
2018_05_21-PM-07_21_22
Last ObjectModification:
2017_07_26-PM-05_05_16
Theory : general
Home
Index