Nuprl Lemma : exp-divides-exp2

x,y:ℤ.  (x ⇐⇒ ∃n:ℕ+(x^n y^n))


Proof




Definitions occuring in Statement :  divides: a exp: i^n nat_plus: + all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q exists: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True exp: i^n top: Top divides: a decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  exp-equal-minusone int_term_value_minus_lemma itermMinus_wf minus-is-int-iff int_formula_prop_less_lemma intformless_wf exp-equal-one nequal_wf exp_wf3 mul_cancel_in_eq not_wf iff_weakening_equal exp-of-mul assoced_elim gcd-exp divides_transitivity gcd_wf equal_wf gcd_is_divisor_1 false_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermMultiply_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt multiply-is-int-iff nat_plus_properties int_subtype_base subtype_base_sq decidable__equal_int gcd_is_divisor_2 divides-iff-gcd one-mul mul-commutes primrec1_lemma less_than_wf nat_plus_subtype_nat exp_wf2 nat_plus_wf exists_wf divides_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination sqequalRule lambdaEquality applyEquality because_Cache intEquality dependent_pairFormation dependent_set_memberEquality natural_numberEquality introduction imageMemberEquality baseClosed dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_functionElimination unionElimination instantiate cumulativity independent_isectElimination setElimination rename pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion int_eqEquality computeAll minusEquality multiplyEquality equalityEquality

Latex:
\mforall{}x,y:\mBbbZ{}.    (x  |  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  (x\^{}n  |  y\^{}n))



Date html generated: 2016_05_15-PM-04_51_23
Last ObjectModification: 2016_01_16-AM-11_28_16

Theory : general


Home Index