Nuprl Lemma : exp-divides-exp2
∀x,y:ℤ.  (x | y 
⇐⇒ ∃n:ℕ+. (x^n | y^n))
Proof
Definitions occuring in Statement : 
divides: b | a
, 
exp: i^n
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
exp: i^n
, 
top: Top
, 
divides: b | a
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
exp-equal-minusone, 
int_term_value_minus_lemma, 
itermMinus_wf, 
minus-is-int-iff, 
int_formula_prop_less_lemma, 
intformless_wf, 
exp-equal-one, 
nequal_wf, 
exp_wf3, 
mul_cancel_in_eq, 
not_wf, 
iff_weakening_equal, 
exp-of-mul, 
assoced_elim, 
gcd-exp, 
divides_transitivity, 
gcd_wf, 
equal_wf, 
gcd_is_divisor_1, 
false_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
multiply-is-int-iff, 
nat_plus_properties, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
gcd_is_divisor_2, 
divides-iff-gcd, 
one-mul, 
mul-commutes, 
primrec1_lemma, 
less_than_wf, 
nat_plus_subtype_nat, 
exp_wf2, 
nat_plus_wf, 
exists_wf, 
divides_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
intEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
introduction, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
setElimination, 
rename, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
int_eqEquality, 
computeAll, 
minusEquality, 
multiplyEquality, 
equalityEquality
Latex:
\mforall{}x,y:\mBbbZ{}.    (x  |  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  (x\^{}n  |  y\^{}n))
Date html generated:
2016_05_15-PM-04_51_23
Last ObjectModification:
2016_01_16-AM-11_28_16
Theory : general
Home
Index