Nuprl Lemma : fact-non-decreasing

[m,n:ℕ].  ((n ≤ m)  ((n)! ≤ (m)!))


Proof




Definitions occuring in Statement :  fact: (n)! nat: uall: [x:A]. B[x] le: A ≤ B implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  eq_int: (i =z j) subtract: m less_than': less_than'(a;b) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  subtype_rel: A ⊆B decidable: Dec(P) int_upper: {i...} nat_plus: +
Lemmas referenced :  int_term_value_mul_lemma itermMultiply_wf multiply-is-int-iff mul_preserves_le nat_plus_properties fact_unroll_1 nat_plus_wf int_upper_properties zero-add nequal-le-implies int_upper_subtype_nat int_term_value_subtract_lemma itermSubtract_wf subtract_wf decidable__le fact_wf int_formula_prop_eq_lemma int_formula_prop_not_lemma intformeq_wf intformnot_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert false_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf fact_unroll nat_wf le_wf less_than'_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry unionElimination equalityElimination promote_hyp instantiate cumulativity equalityEquality dependent_set_memberEquality applyEquality hypothesis_subsumption setEquality multiplyEquality pointwiseFunctionality baseApply closedConclusion baseClosed

Latex:
\mforall{}[m,n:\mBbbN{}].    ((n  \mleq{}  m)  {}\mRightarrow{}  ((n)!  \mleq{}  (m)!))



Date html generated: 2016_05_15-PM-04_05_25
Last ObjectModification: 2016_01_16-AM-11_07_57

Theory : general


Home Index