Nuprl Lemma : fun-connected-induction2

[T:Type]
  ∀f:T ⟶ T
    ∀[R:T ⟶ T ⟶ ℙ]
      ((∀x:T. R[x;x])
       (∀x,y:T.  is f*(f y)  R[x;f y]  R[x;y] supposing ¬((f y) y ∈ T))
       {∀x,y:T.  (x is f*(y)  R[x;y])})


Proof




Definitions occuring in Statement :  fun-connected: is f*(x) uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] nat: not: ¬A ge: i ≥  le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T sq_type: SQType(T) guard: {T} cons: [a b] fun-path: y=f*(x) via L subtract: m last: last(L) select: L[n] uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k less_than': less_than'(a;b) true: True iff: ⇐⇒ Q rev_implies:  Q fun-connected: is f*(x)
Lemmas referenced :  all_wf isect_wf not_wf equal_wf fun-connected_wf list_wf less_than_wf length_wf subtract_wf fun-path_wf set_wf primrec-wf2 nat_wf non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt decidable__equal_int intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma subtype_base_sq int_subtype_base list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma itermAdd_wf int_term_value_add_lemma nil_wf and_wf reduce_hd_cons_lemma decidable__le length2-decomp fun-path-append cons_wf false_wf lelt_wf squash_wf true_wf iff_weakening_equal append_wf length-append equal-wf-T-base length_append subtype_rel_list top_wf add-is-int-iff add_nat_wf length_wf_nat le_wf nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality because_Cache applyEquality functionExtensionality hypothesis functionEquality universeEquality rename setElimination natural_numberEquality intEquality dependent_functionElimination independent_isectElimination productElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination imageElimination instantiate promote_hyp hypothesis_subsumption equalityTransitivity equalitySymmetry hyp_replacement dependent_set_memberEquality applyLambdaEquality imageMemberEquality baseClosed baseApply closedConclusion addEquality pointwiseFunctionality

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}x:T.  R[x;x])
            {}\mRightarrow{}  (\mforall{}x,y:T.    x  is  f*(f  y)  {}\mRightarrow{}  R[x;f  y]  {}\mRightarrow{}  R[x;y]  supposing  \mneg{}((f  y)  =  y))
            {}\mRightarrow{}  \{\mforall{}x,y:T.    (x  is  f*(y)  {}\mRightarrow{}  R[x;y])\})



Date html generated: 2018_05_21-PM-07_44_24
Last ObjectModification: 2017_07_26-PM-05_21_59

Theory : general


Home Index