Nuprl Lemma : mutual-primitive-recursion

[A,B:Type].
  ∀f0:A. ∀g0:B. ∀F:ℕ ⟶ A ⟶ B ⟶ A. ∀G:ℕ ⟶ A ⟶ B ⟶ B.
    ∃f:ℕ ⟶ A
     ∃g:ℕ ⟶ B
      (((f 0) f0 ∈ A)
      ∧ ((g 0) g0 ∈ B)
      ∧ (∀s:ℕ+(((f s) F[s 1;f (s 1);g (s 1)] ∈ A) ∧ ((g s) G[s 1;f (s 1);g (s 1)] ∈ B))))


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] so_apply: x[s1;s2;s3] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T so_apply: x[s1;s2;s3] subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: top: Top so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) cand: c∧ B nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  primrec_wf int_seg_subtype_nat false_wf int_seg_wf pi1_wf_top equal_wf nat_wf pi2_wf primrec0_lemma primrec-unroll nat_plus_wf and_wf le_wf all_wf nat_plus_subtype_nat subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf eq_int_wf bool_wf equal-wf-T-base assert_wf intformeq_wf int_formula_prop_eq_lemma bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_pairFormation lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache productElimination sqequalRule independent_pairEquality applyEquality hypothesisEquality natural_numberEquality setElimination rename hypothesis independent_isectElimination independent_pairFormation functionExtensionality productEquality cumulativity isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality dependent_set_memberEquality unionElimination int_eqEquality intEquality computeAll functionEquality universeEquality baseClosed equalityElimination impliesFunctionality

Latex:
\mforall{}[A,B:Type].
    \mforall{}f0:A.  \mforall{}g0:B.  \mforall{}F:\mBbbN{}  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  A.  \mforall{}G:\mBbbN{}  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B.
        \mexists{}f:\mBbbN{}  {}\mrightarrow{}  A
          \mexists{}g:\mBbbN{}  {}\mrightarrow{}  B
            (((f  0)  =  f0)
            \mwedge{}  ((g  0)  =  g0)
            \mwedge{}  (\mforall{}s:\mBbbN{}\msupplus{}.  (((f  s)  =  F[s  -  1;f  (s  -  1);g  (s  -  1)])  \mwedge{}  ((g  s)  =  G[s  -  1;f  (s  -  1);g  (s  -  1)]))))



Date html generated: 2018_05_21-PM-07_42_41
Last ObjectModification: 2017_07_26-PM-05_20_44

Theory : general


Home Index