Nuprl Lemma : p-fun-exp-injection

[A:Type]. ∀[f:A ⟶ (A Top)].  ∀[n:ℕ]. p-inject(A;A;f^n) supposing p-inject(A;A;f)


Proof




Definitions occuring in Statement :  p-inject: p-inject(A;B;f) p-fun-exp: f^n nat: uimplies: supposing a uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: p-inject: p-inject(A;B;f) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q p-fun-exp: f^n p-id: p-id() do-apply: do-apply(f;x) can-apply: can-apply(f;x) isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal_wf do-apply_wf p-fun-exp_wf assert_wf can-apply_wf subtype_rel_dep_function top_wf subtype_rel_union le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf p-inject_wf primrec0_lemma true_wf primrec-unroll eq_int_wf bool_wf equal-wf-base int_subtype_base intformeq_wf int_formula_prop_eq_lemma bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot p-compose-inject
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality cumulativity because_Cache functionExtensionality applyEquality unionEquality dependent_set_memberEquality unionElimination equalityTransitivity equalitySymmetry functionEquality universeEquality baseApply closedConclusion baseClosed equalityElimination productElimination impliesFunctionality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  (A  +  Top)].    \mforall{}[n:\mBbbN{}].  p-inject(A;A;f\^{}n)  supposing  p-inject(A;A;f)



Date html generated: 2018_05_21-PM-06_33_06
Last ObjectModification: 2017_07_26-PM-04_52_01

Theory : general


Home Index