Nuprl Lemma : power-sum_functionality_wrt_eqmod

m:ℤ. ∀n:ℕ. ∀x,y:ℤ. ∀a,b:ℕn ⟶ ℤ.
  ((x ≡ mod m)  (∀i:ℕn. (a[i] ≡ b[i] mod m))  i<n.a[i]*x^i ≡ Σi<n.b[i]*y^i mod m))


Proof




Definitions occuring in Statement :  power-sum: Σi<n.a[i]*x^i eqmod: a ≡ mod m int_seg: {i..j-} nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q power-sum: Σi<n.a[i]*x^i member: t ∈ T uall: [x:A]. B[x] nat: so_apply: x[s] prop: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A top: Top guard: {T} int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  int_seg_wf eqmod_wf istype-nat istype-int exp_wf2 int_seg_subtype_nat istype-false istype-void int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf add_functionality_wrt_eqmod primrec_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma istype-le decidable__lt istype-less_than sum-as-primrec primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot iff_weakening_uiff assert_wf less_than_wf primrec-wf2 all_wf eqmod_weakening eqmod_functionality_wrt_eqmod multiply_functionality_wrt_eqmod exp_functionality_wrt_eqmod
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule functionIsType universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis applyEquality inhabitedIsType lambdaEquality_alt multiplyEquality independent_isectElimination independent_pairFormation because_Cache dependent_functionElimination independent_functionElimination isect_memberEquality_alt voidElimination productElimination approximateComputation dependent_pairFormation_alt int_eqEquality closedConclusion intEquality dependent_set_memberEquality_alt unionElimination addEquality productIsType equalityElimination equalityTransitivity equalitySymmetry equalityIsType4 baseApply baseClosed promote_hyp instantiate cumulativity equalityIsType1 setIsType functionEquality

Latex:
\mforall{}m:\mBbbZ{}.  \mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbZ{}.  \mforall{}a,b:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}.
    ((x  \mequiv{}  y  mod  m)  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}n.  (a[i]  \mequiv{}  b[i]  mod  m))  {}\mRightarrow{}  (\mSigma{}i<n.a[i]*x\^{}i  \mequiv{}  \mSigma{}i<n.b[i]*y\^{}i  mod  m))



Date html generated: 2019_10_15-AM-11_25_40
Last ObjectModification: 2018_10_19-AM-11_45_28

Theory : general


Home Index