Nuprl Lemma : power-sum_functionality_wrt_eqmod
∀m:ℤ. ∀n:ℕ. ∀x,y:ℤ. ∀a,b:ℕn ⟶ ℤ.
  ((x ≡ y mod m) 
⇒ (∀i:ℕn. (a[i] ≡ b[i] mod m)) 
⇒ (Σi<n.a[i]*x^i ≡ Σi<n.b[i]*y^i mod m))
Proof
Definitions occuring in Statement : 
power-sum: Σi<n.a[i]*x^i
, 
eqmod: a ≡ b mod m
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
power-sum: Σi<n.a[i]*x^i
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
lt_int: i <z j
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
int_seg_wf, 
eqmod_wf, 
istype-nat, 
istype-int, 
exp_wf2, 
int_seg_subtype_nat, 
istype-false, 
istype-void, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
add_functionality_wrt_eqmod, 
primrec_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
istype-le, 
decidable__lt, 
istype-less_than, 
sum-as-primrec, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
primrec-wf2, 
all_wf, 
eqmod_weakening, 
eqmod_functionality_wrt_eqmod, 
multiply_functionality_wrt_eqmod, 
exp_functionality_wrt_eqmod
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
functionIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
inhabitedIsType, 
lambdaEquality_alt, 
multiplyEquality, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
productElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
closedConclusion, 
intEquality, 
dependent_set_memberEquality_alt, 
unionElimination, 
addEquality, 
productIsType, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityIsType4, 
baseApply, 
baseClosed, 
promote_hyp, 
instantiate, 
cumulativity, 
equalityIsType1, 
setIsType, 
functionEquality
Latex:
\mforall{}m:\mBbbZ{}.  \mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbZ{}.  \mforall{}a,b:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}.
    ((x  \mequiv{}  y  mod  m)  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}n.  (a[i]  \mequiv{}  b[i]  mod  m))  {}\mRightarrow{}  (\mSigma{}i<n.a[i]*x\^{}i  \mequiv{}  \mSigma{}i<n.b[i]*y\^{}i  mod  m))
Date html generated:
2019_10_15-AM-11_25_40
Last ObjectModification:
2018_10_19-AM-11_45_28
Theory : general
Home
Index