Nuprl Lemma : ppcc-test4

f:ℤ ⟶ ℤ
  ∀[Q,P:ℤ ⟶ ℤ ⟶ ℙ].
    ((∀a,b:ℤ.  (Q[f[a];b] ⇐⇒ P[a;f[b]]))
     Trans(ℤ;a,b.P[a;b])
     (∀z,w:𝔹.
          ∀a,b,c,d,e:ℤ. ∀x:{z:ℤf[(z 1) 1] d ∈ ℤ.
            ((f[(b 2) 2] if (w ∨bz) ∧b (c =z x) then else f[b] fi  ∈ ℤc∧ P[a;a 1])
             P[(a a) a;c]
             (∀x:ℤ × ℤQ[fst(x);b]  P[snd(x);e 1] supposing = <d, a> ∈ (ℤ × ℤ)) 
            supposing <<c, a>e> = <<x, a>e> ∈ (ℤ × ℤ × ℤ
          supposing (↑z) ∧ (¬↑w)))


Proof




Definitions occuring in Statement :  trans: Trans(T;x,y.E[x; y]) bor: p ∨bq band: p ∧b q assert: b ifthenelse: if then else fi  eq_int: (i =z j) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] cand: c∧ B prop: so_apply: x[s1;s2] so_apply: x[s] pi1: fst(t) pi2: snd(t) all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q uimplies: supposing a member: t ∈ T and: P ∧ Q not: ¬A false: False so_apply: x[s1;s2] pi1: fst(t) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bor: p ∨bq ifthenelse: if then else fi  band: p ∧b q bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b prop: so_lambda: λ2y.t[x; y] iff: ⇐⇒ Q rev_implies:  Q pi2: snd(t) squash: T true: True trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  assert_witness product_subtype_base int_subtype_base subtract_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot eq_int_wf set_subtype_base equal_wf istype-int assert_wf istype-void bool_wf trans_wf add-subtract-cancel squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal eq_int_eq_true btrue_wf iff_imp_equal_bool bfalse_wf istype-assert bor_wf iff_weakening_uiff or_wf false_wf assert_of_bor iff_transitivity equal-wf-base assert_of_band and_functionality_wrt_uiff3 assert_of_eq_int ite_rw_true pi2_wf pi1_wf band_wf ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination hypothesisEquality independent_functionElimination hypothesis lambdaEquality_alt dependent_functionElimination voidElimination functionIsTypeImplies inhabitedIsType rename axiomEquality universeIsType applyEquality because_Cache equalityIsType4 baseApply closedConclusion baseClosed intEquality independent_isectElimination productIsType addEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIsType1 promote_hyp instantiate setElimination setIsType functionIsType universeEquality imageElimination imageMemberEquality productEquality independent_pairFormation unionIsType inrFormation_alt isect_memberEquality_alt cumulativity hyp_replacement dependent_set_memberEquality_alt equalityIsType3 applyLambdaEquality

Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
    \mforall{}[Q,P:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].
        ((\mforall{}a,b:\mBbbZ{}.    (Q[f[a];b]  \mLeftarrow{}{}\mRightarrow{}  P[a;f[b]]))
        {}\mRightarrow{}  Trans(\mBbbZ{};a,b.P[a;b])
        {}\mRightarrow{}  (\mforall{}z,w:\mBbbB{}.
                    \mforall{}a,b,c,d,e:\mBbbZ{}.  \mforall{}x:\{z:\mBbbZ{}|  f[(z  +  1)  -  1]  =  d\}  .
                        ((f[(b  +  2)  -  2]  =  if  (w  \mvee{}\msubb{}z)  \mwedge{}\msubb{}  (c  =\msubz{}  x)  then  e  +  1  else  f[b]  fi  )  c\mwedge{}  P[a;a  +  1])
                        {}\mRightarrow{}  P[(a  +  a)  -  a;c]
                        {}\mRightarrow{}  (\mforall{}x:\mBbbZ{}  \mtimes{}  \mBbbZ{}.  Q[fst(x);b]  {}\mRightarrow{}  P[snd(x);e  +  1]  supposing  x  =  <d,  a>) 
                        supposing  <<c,  a>,  e>  =  <<x,  a>,  e> 
                    supposing  (\muparrow{}z)  \mwedge{}  (\mneg{}\muparrow{}w)))



Date html generated: 2019_10_15-AM-11_06_43
Last ObjectModification: 2018_10_12-AM-10_17_24

Theory : general


Home Index