Nuprl Lemma : quicksort-int-iseg

[L,L':ℤ List]. ∀[n:ℤ].  ∀[x:ℤ]. x ≤ supposing (x ∈ L') supposing L' [n] ≤ quicksort-int(L)


Proof




Definitions occuring in Statement :  quicksort-int: quicksort-int(L) iseg: l1 ≤ l2 l_member: (x ∈ l) append: as bs cons: [a b] nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B iseg: l1 ≤ l2 int_seg: {i..j-} nat: lelt: i ≤ j < k and: P ∧ Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B select: L[n] cons: [a b]
Lemmas referenced :  subtract_wf length_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt le_wf less_than_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base lelt_wf list_subtype_base subtype_base_sq squash_wf true_wf subtype_rel_self iff_weakening_equal le_witness_for_triv l_member_wf iseg_wf append_wf cons_wf nil_wf quicksort-int_wf list_wf select_wf int_seg_properties length-append length_of_cons_lemma length_of_nil_lemma non_neg_length itermAdd_wf int_term_value_add_lemma equal_wf istype-universe select_append_front select_append_back quicksort-int-length quicksort-int-prop1 length_nil length_cons length_append subtype_rel_list top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin dependent_pairFormation_alt dependent_set_memberEquality_alt extract_by_obid isectElimination intEquality hypothesisEquality hypothesis natural_numberEquality setElimination rename independent_pairFormation dependent_functionElimination unionElimination imageElimination independent_isectElimination approximateComputation independent_functionElimination lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule universeIsType because_Cache productIsType equalityIsType4 inhabitedIsType baseApply closedConclusion baseClosed applyEquality promote_hyp instantiate cumulativity equalityTransitivity equalitySymmetry imageMemberEquality universeEquality hyp_replacement applyLambdaEquality addEquality productEquality voidEquality

Latex:
\mforall{}[L,L':\mBbbZ{}  List].  \mforall{}[n:\mBbbZ{}].    \mforall{}[x:\mBbbZ{}].  x  \mleq{}  n  supposing  (x  \mmember{}  L')  supposing  L'  @  [n]  \mleq{}  quicksort-int(L)



Date html generated: 2019_10_15-AM-11_13_26
Last ObjectModification: 2018_10_10-PM-02_08_55

Theory : general


Home Index