Nuprl Lemma : quicksort-int-iseg
∀[L,L':ℤ List]. ∀[n:ℤ].  ∀[x:ℤ]. x ≤ n supposing (x ∈ L') supposing L' @ [n] ≤ quicksort-int(L)
Proof
Definitions occuring in Statement : 
quicksort-int: quicksort-int(L)
, 
iseg: l1 ≤ l2
, 
l_member: (x ∈ l)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
iseg: l1 ≤ l2
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
select: L[n]
, 
cons: [a / b]
Lemmas referenced : 
subtract_wf, 
length_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
le_wf, 
less_than_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
lelt_wf, 
list_subtype_base, 
subtype_base_sq, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
le_witness_for_triv, 
l_member_wf, 
iseg_wf, 
append_wf, 
cons_wf, 
nil_wf, 
quicksort-int_wf, 
list_wf, 
select_wf, 
int_seg_properties, 
length-append, 
length_of_cons_lemma, 
length_of_nil_lemma, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
equal_wf, 
istype-universe, 
select_append_front, 
select_append_back, 
quicksort-int-length, 
quicksort-int-prop1, 
length_nil, 
length_cons, 
length_append, 
subtype_rel_list, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
because_Cache, 
productIsType, 
equalityIsType4, 
inhabitedIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
addEquality, 
productEquality, 
voidEquality
Latex:
\mforall{}[L,L':\mBbbZ{}  List].  \mforall{}[n:\mBbbZ{}].    \mforall{}[x:\mBbbZ{}].  x  \mleq{}  n  supposing  (x  \mmember{}  L')  supposing  L'  @  [n]  \mleq{}  quicksort-int(L)
Date html generated:
2019_10_15-AM-11_13_26
Last ObjectModification:
2018_10_10-PM-02_08_55
Theory : general
Home
Index