Nuprl Lemma : lattice-extend-order-preserving

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f:T ⟶ Point(L)].
[x,y:Point(free-dist-lattice(T; eq))].
  lattice-extend(L;eq;eqL;f;x) ≤ lattice-extend(L;eq;eqL;f;y) supposing x ≤ y


Proof




Definitions occuring in Statement :  lattice-extend: lattice-extend(L;eq;eqL;f;ac) free-dist-lattice: free-dist-lattice(T; eq) bdd-distributive-lattice: BoundedDistributiveLattice lattice-le: a ≤ b lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q top: Top lattice-le: a ≤ b subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] lattice-extend: lattice-extend(L;eq;eqL;f;ac) uiff: uiff(P;Q) squash: T sq_stable: SqStable(P) exists: x:A. B[x] guard: {T} cand: c∧ B lattice-fset-meet: /\(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum f-subset: xs ⊆ ys
Lemmas referenced :  free-dl-le free-dl-point decidable-equal-deq lattice-meet_wf lattice-le_wf free-dist-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-point_wf equal_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf lattice-fset-join-is-lub bdd-distributive-lattice-subtype-bdd-lattice fset-image_wf fset_wf deq-fset_wf lattice-fset-meet_wf lattice-fset-join_wf member-fset-image-iff sq_stable_from_decidable fset-member_wf fset-ac-le-implies2 lattice-le_transitivity bdd-distributive-lattice-subtype-lattice lattice-fset-meet-is-glb
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis productElimination independent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation because_Cache sqequalRule axiomEquality cumulativity applyEquality instantiate lambdaEquality productEquality universeEquality independent_isectElimination equalityTransitivity equalitySymmetry functionEquality functionExtensionality setElimination rename imageElimination imageMemberEquality baseClosed dependent_pairFormation independent_pairFormation hyp_replacement applyLambdaEquality promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f:T  {}\mrightarrow{}  Point(L)].  \mforall{}[x,y:Point(free-dist-lattice(T;  eq))].
    lattice-extend(L;eq;eqL;f;x)  \mleq{}  lattice-extend(L;eq;eqL;f;y)  supposing  x  \mleq{}  y



Date html generated: 2020_05_20-AM-08_45_44
Last ObjectModification: 2017_07_28-AM-09_14_35

Theory : lattices


Home Index