Nuprl Lemma : append_interleaving

[T:Type]. ∀L1,L2:T List.  interleaving(T;L1;L2;L1 L2)


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  interleaving: interleaving(T;L1;L2;L) uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q cand: c∧ B member: t ∈ T squash: T prop: subtype_rel: A ⊆B uimplies: supposing a top: Top true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] increasing: increasing(f;k) int_seg: {i..j-} lelt: i ≤ j < k disjoint_sublists: disjoint_sublists(T;L1;L2;L) le: A ≤ B less_than: a < b so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  le_wf squash_wf true_wf length_append subtype_rel_list top_wf subtype_rel_self iff_weakening_equal add_nat_wf length_wf_nat nat_wf nat_properties decidable__le add-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf list_wf length-append int_seg_properties subtract_wf length_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf non_neg_length append_wf lelt_wf add-member-int_seg2 itermSubtract_wf int_term_value_subtract_lemma id_increasing select_append_front select_wf select_append_back add-subtract-cancel increasing_wf all_wf not_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry intEquality natural_numberEquality independent_isectElimination isect_memberEquality voidElimination voidEquality because_Cache imageMemberEquality baseClosed instantiate universeEquality productElimination independent_functionElimination applyLambdaEquality setElimination rename dependent_functionElimination unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion approximateComputation dependent_pairFormation int_eqEquality independent_pairFormation dependent_set_memberEquality universeIsType addEquality cumulativity productEquality functionExtensionality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    interleaving(T;L1;L2;L1  @  L2)



Date html generated: 2019_10_15-AM-10_57_07
Last ObjectModification: 2018_09_27-AM-10_30_58

Theory : list!


Home Index