Nuprl Lemma : append_interleaving
∀[T:Type]. ∀L1,L2:T List. interleaving(T;L1;L2;L1 @ L2)
Proof
Definitions occuring in Statement :
interleaving: interleaving(T;L1;L2;L)
,
append: as @ bs
,
list: T List
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
universe: Type
Definitions unfolded in proof :
interleaving: interleaving(T;L1;L2;L)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
cand: A c∧ B
,
member: t ∈ T
,
squash: ↓T
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
top: Top
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
nat: ℕ
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
false: False
,
uiff: uiff(P;Q)
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
increasing: increasing(f;k)
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
disjoint_sublists: disjoint_sublists(T;L1;L2;L)
,
le: A ≤ B
,
less_than: a < b
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
le_wf,
squash_wf,
true_wf,
length_append,
subtype_rel_list,
top_wf,
subtype_rel_self,
iff_weakening_equal,
add_nat_wf,
length_wf_nat,
nat_wf,
nat_properties,
decidable__le,
add-is-int-iff,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
itermAdd_wf,
intformeq_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_wf,
false_wf,
equal_wf,
list_wf,
length-append,
int_seg_properties,
subtract_wf,
length_wf,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
int_seg_wf,
non_neg_length,
append_wf,
lelt_wf,
add-member-int_seg2,
itermSubtract_wf,
int_term_value_subtract_lemma,
id_increasing,
select_append_front,
select_wf,
select_append_back,
add-subtract-cancel,
increasing_wf,
all_wf,
not_wf,
exists_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation_alt,
lambdaFormation,
cut,
applyEquality,
thin,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
introduction,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
intEquality,
natural_numberEquality,
independent_isectElimination,
isect_memberEquality,
voidElimination,
voidEquality,
because_Cache,
imageMemberEquality,
baseClosed,
instantiate,
universeEquality,
productElimination,
independent_functionElimination,
applyLambdaEquality,
setElimination,
rename,
dependent_functionElimination,
unionElimination,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
approximateComputation,
dependent_pairFormation,
int_eqEquality,
independent_pairFormation,
dependent_set_memberEquality,
universeIsType,
addEquality,
cumulativity,
productEquality,
functionExtensionality,
functionEquality
Latex:
\mforall{}[T:Type]. \mforall{}L1,L2:T List. interleaving(T;L1;L2;L1 @ L2)
Date html generated:
2019_10_15-AM-10_57_07
Last ObjectModification:
2018_09_27-AM-10_30_58
Theory : list!
Home
Index